Análisis de la movilidad escolar en áreas urbanas
eo
move
eo
move
g
g
Point Cloud Treatment with PDALtools
Caso de estudio:

Luigi Pirelli, David Fernández Arango and Alberto Varela García
Licencia CC BY-SA 4.0
A Coruña. 6th March 2019

Universidade Da Coruña




move I
g
eo
Estudio dinámico de la movilidad escolar mediante tecnologías web de geolocalización (SPIP2015-01867).
Análisis de indicadores big geo-data sobre viarios urbanos para el diseño dinámico de caminos escolares seguros. (SPIP2017-02340)
move I
g
eo
Geomove Fase I:
Geomove Fase II:
(Díaz Grandío, 2012)
Caracterizar espacios peatonales en áreas urbanas para establecer rutas escolares óptimas

- Integrar diferentes fuentes datos
- Aplicar técnicas de superficie de costes acumulados para cálculo de rutas óptimas
(Díaz Grandío, 2012)

(Varela García, 2013)

Área estudio
Materiales




Método






Pendientes
Bordillos
Otros...
Pasos peatones
Obstáculos para sillas ruedas
Obstáculos para peatones
MMCoruna_023_S1.laz + MMCoruna_023_S2.laz
Merge sensor 1 and sensor 2 data
Classify ground and not ground
Filter ground:
* Normal Z filter
* K-Distance filter
* PMF filter
Create MDE
Create Intensity ground raster
Fill empty ground cells by interpolating with neighboring values. txt
Create wheelchair obstacles raster
Wheelchair_obstacles.tif
Input: MMCoruna_023_S1.laz

Output: out_1_ground_and_hag.las
- Filtro Outlier-statistical method (emplea media y desviación estándar)
-
Filtro PMF. Segmenta ground / not ground (Zhang, 2003)
-
Escribir fichero
Segmentar suelo/no suelo

-
Cargar datos *.laz
-
Seleccionar por NumberOfReturns [1:1]
-
Filtro ELM (Chen, 2012)

Output: out_3_a_normals_filter.las
-
Seleccionar Classification[2:2]
-
Calcular NormalZ (knn=30)
-
Seleccionar normalZ [0:0.6] Classification ->1
-
Seleccionar normalZ ! [0:0.6] Classification ->2
-
Merge suelo / no suelo
-
Escribir fichero
Input: out_2_outlier_filter.las



Filtro Normales Z
Normal Z Filter
Output: out_3_b_kdistance_filter.las
Input: out_3_a_normals_filter.las
-
Seleccionar Classification [2:2]
-
KDistance (k=300)
-
Seleccionar puntos KD >1 -> classification = 1
-
Seleccionar puntos KD <1 -> classification = 2
-
Merge puntos suelo / no suelo
- Escribir fichero
Filtro K-Distance


Output: out_3_c_PMF_filter.las
Input: out_3_b_KDistance_filter.las
-
Seleccionar Classification [2:2]
-
PMF. Segmentar suelo / no suelo
- Escribir fichero


Progressive Morphological Filter
MDE
Interpolación con vecinos más cercanos
-
Calcular HAG
-
Seleccionar HAG [0.05 : 2.20] -> Classification = 1
-
Escribir fichero en GTiff con malla 18cm
-
Cortar tiff con máscara edificaciones
-
gdal_calc --calc "A*B" --format GTiff --type Float32 --outfile <out_10_wheelchair_obstacles_masked.tif> -A <out_8_wheelchair_obstacles_raster.tif> --A_band 1
-B <clipped_extent.tif> --B_band 1
-
Obstáculos para sillas ruedas

Otros resultados
Identificación pasos peatones
Delimitación acera / calzada
Pendientes
Rugosidad
Mejoras para QGIS
Mejoras para QGIS. Provider PDALtools
Mejoras para QGIS. Plugin Geomove

Muchas gracias
Si quieres participar en Geomove puedes registrar tu colegio pinchando aquí o contactar con nosotros en:
Point Cloud Treatment with PDALtools. Use Case Geomove Project by Luigi Pirelli, David Fernández Arango and Alberto Varela García is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Point Cloud Treatment with PDALtools. Use Case Geomove Project. Caso de uso Geomove
By darango
Point Cloud Treatment with PDALtools. Use Case Geomove Project. Caso de uso Geomove
QGIS UserConf2019. A Coruña. 6th March 2019.
- 1,215