AWS Glue

Hands-On

Demo

In this demo, we will:

  1. Set up Amazon S3 buckets and upload sample data
  2. Create an AWS Glue Data Catalog
  3. Create an AWS Glue Crawler
  4. Create an AWS Glue ETL job
  5. Run and monitor the ETL job
  6. Set up and use Amazon Athena to query the data
  7. Test the setup
  8. Clean up resources

Agenda

Demo Overview

Create 2

S3 Buckets

my-glue-source-bucket-619811

Create 1st S3 bucket

Upload Sample Data

order_id,date,customer_id,product_id,quantity,price,category
1001,2023-01-01,C001,P101,2,19.99,Electronics
1002,2023-01-02,C002,P102,1,29.99,Books
1003,2023-01-03,C001,P103,3,9.99,Clothing
1004,2023-01-04,C003,P101,1,19.99,Electronics
1005,2023-01-05,C002,P102,2,29.99,Books
1006,2023-01-06,C004,P104,1,49.99,Electronics
1007,2023-01-07,C003,P105,2,15.99,Clothing
1008,2023-01-08,C005,P106,1,39.99,Books
1009,2023-01-09,C001,P107,3,12.99,Clothing
1010,2023-01-10,C002,P101,1,19.99,Electronics

sales_data.csv

my-glue-processed-bucket-619811

Create 2nd S3 Bucket

AWS Glue

sales_database

Create a database

sales_data_crawler

Add crawler

Add data source

Choose data sources and classifiers

Create new IAM role

AWSGlueServiceRole-SalesDemo

Set output and scheduling

Review and create

Create crawler

Run crawler

Crawler runs

Run  Completed

Edit Role

Create Inline Policy

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "s3:GetBucketLocation",
                "s3:ListBucket",
                "s3:GetObject",
                "s3:PutObject"
            ],
            "Resource": [
                "arn:aws:s3:::my-glue-processed-bucket-619811",
                "arn:aws:s3:::my-glue-processed-bucket-619811/*"
            ]
        }
    ]
}

Create policy

S3WriteAccess

Create Glue Job

Create job

Script

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
from awsglue.dynamicframe import DynamicFrame
from pyspark.sql.functions import col, when, sum, avg, count, date_format, round

args = getResolvedOptions(sys.argv, ['JOB_NAME', 'output_bucket'])

sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['JOB_NAME'], args)

# Read data from the Data Catalog
datasource = glueContext.create_dynamic_frame.from_catalog(
    database = "sales_database",
    table_name = "my_glue_source_bucket_619811"
)

# Convert to DataFrame for complex transformations
df = datasource.toDF()

# Data Cleaning and Type Casting
df = df.withColumn("order_id", col("order_id").cast("int"))
df = df.withColumn("date", col("date").cast("date"))
df = df.withColumn("quantity", col("quantity").cast("int"))
df = df.withColumn("price", col("price").cast("double"))

# Calculate total sale amount
df = df.withColumn("total_amount", round(col("quantity") * col("price"), 2))

# Categorize orders by total amount
df = df.withColumn("order_size", 
    when(col("total_amount") < 20, "Small")
    .when((col("total_amount") >= 20) & (col("total_amount") < 50), "Medium")
    .otherwise("Large"))

# Extract month from date
df = df.withColumn("month", date_format(col("date"), "MM-yyyy"))

# Aggregate data for analysis with rounding
monthly_sales = df.groupBy("month", "category").agg(
    round(sum("total_amount"), 2).alias("total_sales"),
    round(avg("total_amount"), 2).alias("avg_order_value"),
    count("order_id").alias("num_orders")
)

Available in Resources Section

customer_summary = df.groupBy("customer_id").agg(
    round(sum("total_amount"), 2).alias("total_spent"),
    count("order_id").alias("num_orders"),
    round(avg("total_amount"), 2).alias("avg_order_value")
)

# Coalesce to single partition
monthly_sales = monthly_sales.coalesce(1)
customer_summary = customer_summary.coalesce(1)

# Convert back to DynamicFrames
processed_orders = DynamicFrame.fromDF(df, glueContext, "processed_orders")
monthly_sales_df = DynamicFrame.fromDF(monthly_sales, glueContext, "monthly_sales")
customer_summary_df = DynamicFrame.fromDF(customer_summary, glueContext, "customer_summary")

# Write to S3
output_bucket = args['output_bucket']

glueContext.write_dynamic_frame.from_options(
    frame = processed_orders,
    connection_type = "s3",
    connection_options = {"path": f"s3://{output_bucket}/processed_orders/"},
    format = "parquet"
)

glueContext.write_dynamic_frame.from_options(
    frame = monthly_sales_df,
    connection_type = "s3",
    connection_options = {
        "path": f"s3://{output_bucket}/monthly_sales/",
        "partitionKeys": []
    },
    format = "parquet"
)

glueContext.write_dynamic_frame.from_options(
    frame = customer_summary_df,
    connection_type = "s3",
    connection_options = {
        "path": f"s3://{output_bucket}/customer_summary/",
        "partitionKeys": []
    },
    format = "parquet"
)

job.commit()

Job details

Add Job parameter

--output_bucket
my-glue-processed-bucket-619811

Run Job

Output

Output Bucket

Athena

CREATE EXTERNAL TABLE processed_orders (
  order_id INT,
  date DATE,
  customer_id STRING,
  product_id STRING,
  quantity INT,
  price DOUBLE,
  total_amount DOUBLE,
  order_size STRING,
  month STRING,
  category STRING
)
STORED AS PARQUET
LOCATION 's3://my-glue-processed-bucket-619811/processed_orders/';
CREATE EXTERNAL TABLE monthly_sales (
  month STRING,
  category STRING,
  total_sales DOUBLE,
  avg_order_value DOUBLE,
  num_orders BIGINT
)
STORED AS PARQUET
LOCATION 's3://my-glue-processed-bucket-619811/monthly_sales/';
CREATE EXTERNAL TABLE customer_summary (
  customer_id STRING,
  total_spent DOUBLE,
  num_orders BIGINT,
  avg_order_value DOUBLE
)
STORED AS PARQUET
LOCATION 's3://my-glue-processed-bucket-619811/customer_summary/';
SELECT * FROM processed_orders LIMIT 10;
SELECT * FROM monthly_sales ORDER BY month, category;
SELECT * FROM customer_summary ORDER BY total_spent DESC LIMIT 5;

Clean Up

Empty and Delete S3 Buckets

Repeat the Same for other buckets also

Delete job

Delete crawler

Delete Glue Database

Delete IAM Role

🙏

Thanks

for

Watching

AWS Glue - Hands-On Demo

By Deepak Dubey

AWS Glue - Hands-On Demo

AWS Glue - Hands-On Demo

  • 83