AC-Circuits

Alternating Current

AC-generator

AC-Circuits

Alternating current

 AC-circuits

      AC-generator

           Induced EMF

=N\ \left| \tfrac{d}{dt}(AB\cos\phi)\right|
\phi=\omega t
\mathcal E=N\ \left|\tfrac{d}{dt}(\Phi_m)\right|

for

\text{The induced EMF }
\text{each with area $A$,}
\text{rotating at a constant rate $\omega=d\phi/dt$, }
\text{in a uniform magnetic field $B$ :}
\text{in a coil of $N$ loops,}
\mathcal E=N AB\omega \sin\omega t

 AC-circuits

      AC-generator

           Experimental results

\omega=d\phi/dt
\phi=\omega t

For constant

B_{\small \perp}=B\cos\phi
=B\cos\omega t
\mathcal E=N\ \tfrac{d}{dt}(AB\cos\omega t)
=N A B\ \omega\ \sin\omega t

 AC-circuits

      AC-generator

 

 

.

The output of an AC source flips polarity periodically.

 

The output of an DC source has a fixed polarity.

 

 AC-circuits

      AC-generator

           AC-source

V =V_0\sin\omega t

(a) The output of an AC generator:

 

(b) Symbol used to represent an AC voltage source in a circuit diagram.

 

Parameters of an AC-source:

Peak EMF (Volt)

V_0

Angular Frequency (rad/s)

\omega

Frequency (1/s = Hz)

f

Period (seconds)

T
f=\tfrac{\omega}{2\pi}
T=\tfrac{1}{f}

 AC-circuits

      AC-generator

 

 

.

(a) The dc voltage and current are constant in time (once the current is established.)

(b) The voltage and current versus time are quite different for ac power. In this example, which shows 60-Hz ac power and time t in milliseconds, voltage and current are sinusoidal and are in phase for a simple resistance circuit. 

 AC-circuits

      AC-generator

             AC Sources

simple AC-circuits

AC-Circuits

Alternating current

 AC-circuits

      AC-circuits

           Section 15.2

 AC-circuits

      AC-circuits

           AC-source + Resistor

v_R(t)=v_s(t)=V_0 \sin\omega t
i_R(t)=\tfrac{v_R(t)}{R}=\tfrac{V_0}{R} \sin\omega t=I_0 \sin\omega t

 AC-circuits

      AC-circuits

           AC-source + Resistor

 AC-circuits

      AC-circuits

           AC-source + Capacitor

v_C(t)=V_0 \sin\omega t
i_C(t)=\tfrac{dQ}{dt}
=\tfrac{d}{dt} (C\ v_c(t))
={CV_0 \omega} \cos\omega t
={I_0} \cos\omega t
= C\tfrac{d}{dt} ( v_c(t))
X_C=\frac{V_0}{I_0}= \frac{1}{\omega C}

Current Leads Voltage by            

\pi/2

 AC-circuits

      AC-circuits

           AC-source + Capacitor

 AC-circuits

      AC-circuits

           AC-source + Inductor

v_L(t)=V_0 \sin\omega t
=L\frac{di_L(t)}{dt}
i_L(t)=\int_0^t\tfrac{V_0}{L} \sin \omega t\ dt
=-\frac{V_0}{ \omega L} \cos\omega t
=-{I_0} \cos\omega t
X_L=\frac{V_0}{I_0}= {\omega L}

Current Lags Voltage by            

\pi/2

 AC-circuits

      AC-circuits

           AC-source + Inductor

 AC-circuits

      AC-circuits

           Summary

RLC-circuits

AC-Circuits

Alternating current

 AC-circuits

      RLC-circuits

           Section 15.3

 AC-circuits

      RLC-circuits

           RLC in series

Consider a circuit where R, L, and C are in series with an AC-source. What is the electric current response?

How do we reconcile the different phase relationships?

 AC-circuits

      RLC-circuits

           RLC in series

Consider a circuit where R, L, and C are in series with an AC-source. What is the electric current response?

Since the elements are in series, the same current flows through each element at all points in time. 

The relative phase between the current and the emf is not obvious when all three elements are present. Consequently, we represent the current by the general expression:

i(t)=I_0 \sin(\omega t-\phi)

where the peak current and the phase-shift are unknowns.

 AC-circuits

      RLC-circuits

           RLC in series

Power

AC-Circuits

RLC

 AC-circuits

      Power in AC-circuits

           Section 15.4

 AC-circuits

      Energy & Power

           Power dissipated in resistor

 AC-circuits

      Energy & Power

           Power in various components

Resonance

AC-Circuits

RLC

 AC-circuits

      Resonance in AC-circuits

           Section 15.5

 AC-circuits

      Resonance in AC-circuits

           Condition for resonance

 AC-circuits

      Resonance in AC-circuits

           [CA] Resonance

 AC-circuits

      Resonance in AC-circuits

           [CA] Resonance

 AC-circuits

      Resonance in AC-circuits

           [CA] Resonance

 AC-circuits

      Resonance in AC-circuits

           [CA] Resonance

AC-Circuits

AC-Circuits

By drmoussaphysics

AC-Circuits

  • 234