Technology Update

Abdullah Fathi

(MAMPU)

Introduction to R

History

  • R is a programming language
  • An implementation over S language
  • Designed by Ross Ihaka and Robert Gentleman at the University of Auckland in 1993
  • Stable released on 31 October 2014 (7 years ago), by R Development Core Team Under GNU General Public License

Benefit of using R

  • Open source
  • Cross Platform compatible
  • 12000+ extensions/packages
  • Produce quality graph
  • Large user community
  • One of the fastest growing programming language
  • Connect with other languages
  • Able to integrate with powerful BI and ETL tools

Top 10 Programming Language Ranking

What is R uses for?

  • Statistical Inference
  • Data Analysis
  • Data Wrangling
  • Visualization
  • Machine Learning

R has the best mix of desirable attributes including high data science for business capability, low cost, growth, and has a massive ecosystem of powerful R libraries

R or Python?

 These two titans can join forces through "reticulate" package which allows us to use Python and R together

Data Science Workflow Using R

R Stack

  • R & R Packages
  • RStudio
  • Shiny

R Package

Packages to expand the feature of R

1. Import Data

  • RDBMS (MySQL, MariaDB, MSSQL, Postgres, Oracle)
  • Non-Relational DB (mongo, cassandra)
  • File (csv, excel, txt, etc)
  • HDFS (Hadoop)
  • Web Scraping
  • Many more...

2. Data Wrangling (Dplyr)

2. Data Wrangling (Dplyr)

2. Data Wrangling (Tidyr)

3. Data Exploration (DataExplorer)

Speed up data exploration process

create_report(df)

4. Data Visualization   

4. Data Visualization   

4. Data Visualization   

4. Data Visualization   

4. Data Visualization                       

4. Data Visualization                         

4. Data Visualization                         

4. Data Visualization                         

4. Data Visualization                         

4. Data Visualization (other)

  • Base R

  • d3r (d3.js)

  • rcharts

  • ggvis

  • rgl (3d plot)

  • patchwork (combine seperate ggplot into same graphic)

  • many more...

Integrated Development Environment

What is RStudio?

  • Add-on to R
  • User-friendly graphical interface

RStudio (IDE)

RStudio Edition

  • RStudio Desktop
    • Premier IDE for R
  • RStudio Server
    • RStudio anywhere using a web browser
  • RStudio Workbench
    ​(Previously known as Rstudio Server Pro)
    • Enterprise edition
    • Adds many enhancements to the open-source version of RStudio Server

RStudio Workbench Features

  • Authentication (ActiveDirectory, LDAP, SAML, OpenID, or Google Accounts)
  • High-Availability and Load Balancing
  • Multiple versions of R
  • Multiple R sessions per user
  • Security features
  • Support for Jupyter, JupyterLab, and VS Code editor sessions
  • Project sharing for easy collaboration within workgroups
  • Administrative dashboard that provides insight into active sessions, server health, and monitoring of system-wide and per-user performance and resource metrics
  • Establish CPU priorities and memory limits for users or groups 

Shiny Dashboard

Build an interactive web applications for visualizing data. Bring R data analysis to life.

Contains R functions for common HTML structures, UI Controls (Components/Widgets), and web framework tools. The framework is highly flexible, but require more knowledge of HTML & CSS

Schedule or Stream Data for Shiny Dashboard

RStudio Connect (Enterprise)

A push-button publishing from the RStudio to deploy Shiny applications, R Markdown reports, dashboards, plots, APIs, and more in one convenient place

RStudio Connect's Feature

Manage and Control Access

Easily Control Schedule and Stream Data

Shiny Themes & Dashboard

Argon Dash

Argon Dash (cont..)

Argon Dash (cont..)

Shiny.Semantic

bs4dash

bs4dash (mobile view)

ShinyMobile (Android, ios or Desktop)

Other Demo

THANK YOU

DRSA-Technology Update

By Abdullah Fathi

DRSA-Technology Update

Technology Update for DRSA. Focusing on R, Rstudio and Shiny

  • 229