Gradient descent with a general cost

Flavien Léger

joint work with Pierre-Cyril Aubin-Frankowski

1. A new class of algorithms

2. Alternating minimization

3. Applications

Outline

\[x_{n+1}=x_n-\frac{1}{L}\nabla f(x_n)\]

Objective function \(f\colon \mathbb{R}^d\to\mathbb{R}\)

Vanilla gradient descent

\(f\) is \(L\)-smooth if \[\nabla^2f\leq L I_{d\times d}\]

1. A new class of algorithms

D E F I N I T I O N

Minimizing movement point of view

Two steps: 

1) majorize: find the tangent parabola (“surrogate”)

2) minimize: minimize the surrogate

Take \(f\) to be \(L\)-smooth

The \(y\)-step

The \(y\)-step (“majorize”) is: 

\[y_{n+1} = \argmin_{y}\phi(x_n,y)\]

The \(x\)-step (”minimize”) is:

\[x_{n+1} = \argmin_{x}\phi(x,y_{n+1})\]

Family of majorizing functions \(\phi(x,y)\)

\(\phi(\cdot,y_{n+1})\)

Optimal transport tools

The \(c\)-transform of \(f\) is

\[f^c(y)=\inf\{\lambda\in\mathbb{R} : \forall x\in\mathbb{R}^d, \,f(x)\le c(x,y)+\lambda\}\]

Given: \(X\) and \(f\colon X\to\mathbb{R}\)

Choose: \(Y\) and \(c(x,y)\)

\(c(\cdot,y)+f^c(y)\)

\(c(\cdot,y)+\lambda\)

D E F I N I T I O N

\(\frac{L}{2}\lVert x-y\rVert^2\)

\(c(x,y)\).

\[f(x)\leq c(x,y)+f^c(y)\]

Optimal transport tools

\(f\) is \(c\)-concave if

\[f(x)=\inf_{y\in Y}c(x,y)+f^c(y)\]

Envelope of the surrogates

Can always find a tangent upperbound

Interpreted as a generalized smoothness condition

 

D E F I N I T I O N

\[\inf_{x\in X} f(x)=\inf_{x\in X}\inf_{y\in Y} c(x,y)+f^c(y)=\phi(x,y)\]

\[f(x)\leq c(x,y)+f^c(y)\eqqcolon\phi(x,y)\]

Gradient descent with a general cost

\begin{aligned} y_{n+1} &= \argmin_{y\in Y} c(x_n,y)+f^c(y)\\ x_{n+1} &= \argmin_{x\in X} c(x,y_{n+1})+f^c(y_{n+1}) \end{aligned}
\begin{aligned} -\nabla_xc(x_n,y_{n+1})&=-\nabla f(x_n)\\ \nabla_xc(x_{n+1},y_{n+1})&=0 \end{aligned}

If \(f\) is \(c\)-concave (i.e. \(f(x)=\inf_{y} c(x,y)+f^c(y)\)):

\(\phi(\cdot,y_{n+1})\)

Examples

\(c(x,y)=u(x)-u(y)-\langle\nabla u(y),x-y\rangle\): mirror descent

 

\[\nabla u(x_{n+1})-\nabla u(x_n)=-\nabla f(x_n)\]

\(c(x,y)=u(y|x)\): natural gradient descent

 

\[x_{n+1}-x_n=-\nabla^2 u(x_n)^{-1}\nabla f(x_n)\]

\(c(x,y)=\frac{L}{2}d_M^2(x,y)\): Riemannian gradient descent

 

\[x_{n+1}=\exp_{x_n}(-\frac{1}{L}\nabla f(x_n))\]

Newton

\(-\nabla_xc(x,y)=\xi\Leftrightarrow y=\exp_x(\frac{1}{L}\xi)\)

\(u(x|y)\)

2. Alternating minimization

\begin{aligned} y_{n+1} &= \argmin_{y\in Y} \phi(x_n,y)\\ x_{n+1} &= \argmin_{x\in X} \phi(x,y_{n+1}) \end{aligned}

\(\phi(x,y)=c(x,y)+f^c(y)\) : previous algo

\(\phi(x,y)=c(x,y)+f^c(y)+g(x)\) : forward–backward version

 

\(X,Y\)

\(\phi\colon X\times Y\to\mathbb{R}\) ,          \(\mathrm{minimize}_{x\in X,y\in Y} \;\phi(x,y)\)

Setup

The five-point property

For all \(x,y,y_n\),

\[\phi(x,y_{n+1})+\phi(x_n,y_n)\leq \phi(x,y)+\phi(x,y_n)\]

 

They show: \(\phi(x_n,y_n)\to\inf \phi\)

No structure beyond \((X,Y,\phi)\)

Csiszár–Tusnády (’84):

(FPP)

If \(\phi\) satisfies the FPP then 

\[\phi(x_n,y_n)\leq \phi(x,y)+\frac{\phi(x,y_0)-\phi(x_0,y_0)}{n}\]

Rem: strong FPP gives linear rate

T H E O R E M

The five-point property

Limitation: FPP is nonlocal

The Kim–McCann metric and cross-curvature

Kim–McCann metric: \(-\nabla^2_{xy}c(x,y)(\xi,\eta)\)

\[\phi(x,y)=c(x,y)+g(x)+h(y)\]

Cross-curvature: \(\mathfrak{S}_c=-\nabla^4_{xyxy}c + \nabla^3_{xxy}c\,(\nabla^2_{xy}c)^{-1}\nabla^3_{xyy}c\)

\(\delta_c(x',y';x,y)=c(x,y')+c(x',y)-c(x,y)-c(x',y')\)

Kim–McCann ’10

(Ma–Trudinger–Wang ’05)

A local criteria for the five-point property

Suppose that \(\phi\) (i.e. \(c\)) has nonnegative cross-curvature.

 

If \(F(x)\coloneqq\inf_{y\in Y}\phi(x,y)\) is convex on every Kim–McCann geodesic \(t\mapsto (x(t),y)\) satisfying \(\nabla_x\phi(x(0),y)=0\), then \(\phi\) satisfies the FPP.

T H E O R E M

\[\phi(x,y)=c(x,y)+g(x)+h(y)\]

3. Applications

Gradient descent and mirror descent

\(c(x,y)=u(x|y)\longrightarrow\) mirror descent

 

\[\nabla u(x_{n+1})-\nabla u(x_n)=-\nabla f(x_n)\]

 

\(c\)-concavity \(\longrightarrow\) relative smoothness \(\nabla^2f\leq\nabla^2u\)

 

FFP \(\longrightarrow\) convexity \(\nabla^2 f\geq 0\)

 

Convergence rate: if \(0\leq \nabla^2f\leq \nabla^2u\) then

\[f(x_n)\leq f(x)+\frac{u(x|x_0)}{n}\]

Natural gradient descent and Newton's method

\(c(x,y)=u(y|x)\longrightarrow\) NGD

 

\[x_{n+1}-x_n=-\nabla^2u(x_n)^{-1}\nabla f(x_n)\]

 

Convergence rate: if \[\nabla^3u(\nabla^2u^{-1}\nabla f,-,-)\leq \nabla^2f\leq \nabla^2u+\nabla^3u(\nabla^2u^{-1}\nabla f,-,-)\] then

\[f(x_n)\leq f(x)+\frac{u(x_0|x)}{n}\]

Newton's method: new global convergence rate.

New condition on \(f\) similar but different from self-concordance

T H E O R E M

Riemannian setting

\((M,g),\quad X=Y=M,\quad c(x,y)=\frac{L}{2} d^2(x,y)\)

1. Explicit:   \(x_{n+1}=\exp_{x_n}\big(-\frac{1}{L}\nabla f(x_n)\big)\)

    \(R\geq 0\): (smoothness and) \(\nabla^2f\geq 0\) gives \(O(1/n)\) convergence rates

    \(R\leq 0\): ? (nonlocal condition)

 

2. Implicit:   \(x_{n+1}=\argmin_{x} f(x)+\frac{L}{2}d^2(x,x_n)\)

    \(R\leq 0\): \(\nabla^2f\geq 0\) gives \(O(1/n)\) convergence rates

    \(R\geq 0\): if nonnegative cross-curvature then convexity of \(f\) on Kim–McCann geodesics saves the day

da Cruz Neto, de Lima, Oliveira ’98

Bento, Ferreira, Melo ’17

See: Ambrosio, Gigli, Savaré ’05

Bregman alternating minimization

\(\phi(x,y)=u(x|y)+g(x)+h(y)\)

If \(g=0\) : mirror descent on \(f(x)\coloneqq \inf_yc(x,y)+h(y)\)

  • \(u=\frac{L}{2}\lVert\cdot\rVert^2\) :   POCS, (forward–backward) gradient descent
  • \(u=\mathrm{KL}\) : EM algorithm, Sinkhorn

Proposition: if \(f+g\) is convex then \(O(1/n)\) convergence rate.

If \(f+g\) is strongly convex then linear rate.

Thank you!

(Lyon 2023-09-26) Gradient descent with a general cost

By Flavien Léger

(Lyon 2023-09-26) Gradient descent with a general cost

  • 162