WAVE THEORY

TRANSVERSE AND LONGITUDINAL WAVES

TRANSVERSE WAVES

LONGITUDINAL WAVES

TRANSVERSE WAVES

TRANSVERSE WAVES: TIME DEPENDENCE

TIME DEPENDENCE

\( y(t) = y_{m}  sin(\omega t + \phi_{x})\)

\( \omega=2 \pi \nu=\frac{2 \pi}{T} \)

\( \omega = angular \, frequency\)

\( T = period \)

\( \phi_{x} = spatial \, phase \)

TRANSVERSE WAVES: SPATIAL DEPENCENCE

SPATIAL DEPENDENCE

\( y(x) = y_{m} sin(k x + \phi_{t})\)

\( k = \frac{2 \pi}{\lambda}\)

\( k = wavenumber \)

\( \lambda = wavelength \, (spatial \, period) \)

\( \phi_{t} = temporal \, phase \)

TRANSVERSE SINUSOIDAL WAVE

\[ \phi_{x} = k x \]

\[ \phi_{t} = - \omega t \]

\[ y(x,t) = y_{m} sin (k x - \omega t + \phi) \]

\[ \phi = additional \, phase \]

PHASE SPEED OF A WAVE

\( k x - \omega t = \frac{\pi}{2} \)

\( x(t) = \frac{\pi}{2 k} + \frac{\omega}{k} t \)

\( x(t) = \frac{\lambda}{4} + \frac{\omega}{k} t = x_{0} + v_{phase} t \)

\( x_{0} = \frac{\lambda}{4}; \)

\[ \boxed{v_{phase} = \frac{\omega}{k} = \lambda \, \nu} \]

\[ \boxed{\omega =c \, k, \; c=\lambda \, \nu}  \]

For Light

SUPERPOSITION PRINCIPLE FOR WAVES 

"If two functions are a solution of the wave equations, then their sum is a valid solution"

\[ y_{1}(x,t); \; y_{2}(x,t) \Rightarrow y_{1}(x,t) + y_{2}(x,t) \]

\[ \frac{\partial^{2}[y(x,t)]}{\partial t^{2}} = v^{2}_{phase} \frac{\partial ^{2}[y(x,t)]}{\partial x^{2}} \]

INTERFERENCE BETWEEN SINUSOIDAL WAVES

\( y_{1}(x,t) = y_{m} sin(kx - \omega t) \)

\( y_{2}(x,t) = y_{m} sin(kx - \omega t + \phi) \)

\[ \boxed{y(x,y) = y_{1}(x,t) + y_{2}(x,t) = 2 y_{m} cos \left( \frac{\phi}{2} \right) sin \left( kx - \omega t + \frac{\phi}{2} \right)} \]

INTERFERENCE, STATIONARY WAVES AND RESONANCES

\( y_{1}(x,t) = y_{m} sin(kx - \omega t) \)

\( y_{2}(x,t) = y_{m} sin(kx + \omega t) \)\( y(x,t) = y_{1}(x,t) + y_{2}(x,t) \)

\( \Downarrow \)

\[ \boxed{y(x,t) = [ 2 y_{m} sin(kx) ] cos( \omega t)} \]

\[ \boxed{ \lambda = \frac{2 L}{n}; \; n=1,2,3...} \]

INTERFERENCE, STATIONARY WAVES AND RESONANCES

WAVES: COMPLEX FORMALISM AND PLANE WAVES

\( y(x,t) = y_{m} cos(kx - \omega t + \phi) \)

\( \omega=2 \pi \nu=\frac{2 \pi}{T}\)

\( k = \frac{2 \pi}{\lambda}\)

\tilde{y}(x,t) = y_{m} cos(kx - \omega t + \phi) + i \, y_{m} sin(kx - \omega t + \phi)
e^{i \, \alpha} = cos(\alpha) + i \, sin(\alpha)
\tilde{y}(x,t) = \tilde{y}_{m} e^{i(kx - \omega t)}; \; \tilde{y}_{m}=y_{m} e^{i \phi}
\tilde{y}(x,t) = y_{m} e^{i(kx - \omega t + \phi)} = y_{m} e^{i \phi} e^{i(kx - \omega t)}
f(x)

is a well behaved function

\hat{f}(k) = \frac{1}{\sqrt{\pi}} \int^{-\infty}_{\infty} f(x) e^{-ikx}

is its Fourier transform

f(x) = \frac{1}{\sqrt{\pi}} \int^{-\infty}_{\infty} \hat{f}(k) e^{ikx}

is its inverse Fourier transform

k=\frac{2 \pi}{\lambda}

WAVES AND FOURIER TRANSFORMS

WAVES AND FOURIER TRANSFORMS

f(x)

is a well behaved function

\hat{f}(k) = \frac{1}{\sqrt{\pi}} \int^{-\infty}_{\infty} f(x) e^{-ikx}

is its Fourier transform

f(x) = \frac{1}{\sqrt{\pi}} \int^{-\infty}_{\infty} \hat{f}(k) e^{ikx}

is its inverse Fourier transform

k=\frac{2 \pi}{\lambda}

NON-DISPERSIVE WAVES PACKETS AND FOURIER TRANSFORMS

\hat{f}(k) = \frac{1}{\sqrt{\pi}} \int^{-\infty}_{\infty} f(x,0) e^{-ikx}
f(x,t) = \frac{1}{\sqrt{\pi}} \int^{-\infty}_{\infty} \hat{f}(k) e^{i(kx-\omega (k)t)}
v_g = \frac{d \omega (k)}{dk}

Group Velocity

NON-DISPERSIVE WAVES PACKETS AND FOURIER TRANSFORMS

v_{p} < v_{g}
v_{p} = v_{g}
v_{p} > v_{g}

DISPERSIVE WAVES PACKETS

\omega (k) = \frac{\hbar k^2}{2m}
v_{g} = \frac{\omega (k)}{dk}\bigg\rvert_{k=k_{0}} = \frac{\hbar k_{0}}{m}
v_{p} = \frac{\omega (k)}{k} = \frac{\hbar k}{2m}

Materials and Platforms for AI - Wave Theory

By Giovanni Pellegrini

Materials and Platforms for AI - Wave Theory

  • 97