BAND STRUCTURES

ELECTRONIC AND OPTICAL PROPERTIES

THE STARTING POINT: A 1D PERIODIC LATTICE OF ATOMS

a
-\frac{a}{2}
\frac{a}{2}
g = \frac{2 \pi}{a}
-\frac{g}{2}
\frac{g}{2}
x
k

Bravais Lattice: \(\{\vec{R}\}, \, \vec{R}=ma, \, m \in \mathbb{Z}\)

Reciprocal Lattice: \(\{\vec{G}\}, \, \vec{G}=lg, \, l \in \mathbb{Z}\)

Unit cell

Brillouin Zone

UNDERSTANDING THE BAND DIAGRAM

\begin{dcases} \varphi_{nk}(x) = e^{ikx}\sum_{g_n}c_{k-g_n}e^{-g_n x} \\ f_{nk}(x) = \sum_{g_n}c_{k-g_n}e^{-g_n x} \end{dcases}
k
E
-\frac{g}{2}
\frac{g}{2}
E_g

AN EXAMPLE OF CENTRAL EQUATION

\bgroup \def\arraystretch{2.0} \left[ \begin{array}{ccccc} \frac{\hbar^2}{2 m}(k-2 g)^2 & V_0 & 0 & 0 & 0 \\ V_0 & \frac{\hbar^2}{2 m}(k-g)^2 & V_0 & 0 & 0 \\ 0 & V_0 & \frac{\hbar^2}{2 m} k^2 & V_0 & 0 \\ 0 & 0 & V_0 & \frac{\hbar^2}{2 m}(k+g)^2 & V_0 \\ 0 & 0 & 0 & V_0 & \frac{\hbar^2}{2 m}(k+2 g)^2 \end{array}\right] \egroup \left(\begin{array}{c} c_{k-2 g} \\ c_{k-g} \\ c_k \\ c_{k+g} \\ c_{k+2 g} \end{array}\right)=E_n\left(\begin{array}{c} c_{k-2 g} \\ c_{k-g} \\ c_k \\ c_{k+g} \\ c_{k+2 g} \end{array}\right)

ESTIMATING THE BAND GAP

V(x) = 2V_0 \cos(gx) = V_0e^{igx}+V_0e^{-igx}
\begin{gathered} V_0 c_{k-g}+\left(\frac{\hbar^2}{2 m} k^2-E_n\right) c_k+V_0 c_{k+g}=0 \\ V_0 c_k+\left(\frac{\hbar^2}{2 m}(k+g)^2-E_n\right) c_{k+g}+V_0 c_{k+2 g}=0 \end{gathered}
\left(\begin{array}{cc} \left(\frac{\hbar^2}{2 m} k^2-E_n\right) & V_0 \\ V_0 & \left(\frac{\hbar^2}{2 m}(k+g)^2-E_n\right) \end{array}\right)\left(\begin{array}{c} c_k \\ c_{k+g} \end{array}\right)=\left(\begin{array}{l} 0 \\ 0 \end{array}\right)

ESTIMATING THE BAND GAP

with \; k=-\frac{g}{2}
k
E
-\frac{g}{2}
\frac{g}{2}
E_g

ESTIMATING THE BAND GAP

with \; k=-\frac{g}{2}
\left(\begin{array}{cc} \left(\frac{\hbar^2}{2 m}\left(-\frac{g}{2}\right)^2-E_n\right) & V_0 \\ V_0 & \left(\frac{\hbar^2}{2 m}\left(\frac{g}{2}\right)^2-E_n\right) \end{array}\right)\left(\begin{array}{l} c_{-g / 2} \\ c_{g / 2} \end{array}\right)=\left(\begin{array}{l} 0 \\ 0 \end{array}\right)

An homogeneous system has a non-trivial solution only if the determinant of the coefficient matrix is zero

\left|\begin{array}{cc} \frac{\hbar^2}{2 m}\left(\frac{g}{2}\right)^2-E_n & V_0 \\ V_0 & \frac{\hbar^2}{2 m}\left(-\frac{g}{2}\right)^2-E_n \end{array}\right|=0
E_{\pm}=\frac{\hbar^2}{2 m}\left(\frac{g}{2}\right)^2 \pm V_0, \\[10pt] E_{-}=E_{n}, \, E_{+}=E_{n+1}
E_g = E_{+}-E_{-} = 2V_0

FINDING THE EIGENFUNCTIONS

E_{+}=\frac{\hbar^2}{2 m}\left(\frac{g}{2}\right)^2 + V_0
\left(\begin{array}{cc} -V_0 & V_0 \\ V_0 & -V_0 \end{array}\right)\left(\begin{array}{l} c_{-g / 2} \\ c_{g / 2} \end{array}\right)=\left(\begin{array}{l} 0 \\ 0 \end{array}\right)
c_{-g / 2} = c_{g/2}
\varphi_{nk}(x) = e^{-i\frac{g}{2}x}(1+e^{igx})
\varphi_{nk}(x) \propto \cos \big(\frac{g}{2}x \big)
E_{-}=\frac{\hbar^2}{2 m}\left(\frac{g}{2}\right)^2 - V_0
\left(\begin{array}{cc} V_0 & V_0 \\ V_0 & V_0 \end{array}\right)\left(\begin{array}{l} c_{-g / 2} \\ c_{g / 2} \end{array}\right)=\left(\begin{array}{l} 0 \\ 0 \end{array}\right)
c_{-g / 2} = -c_{g/2}
\varphi_{nk}(x) = e^{-i\frac{g}{2}x}(1-e^{igx})
\varphi_{nk}(x) \propto \sin \big(\frac{g}{2}x \big)

Valence Band

Conduction Band

FINDING THE EIGENFUNCTIONS

\varphi_{nk}(x) \propto \cos \big(\frac{g}{2}x \big)
\varphi_{nk}(x) \propto \sin \big(\frac{g}{2}x \big)

Valence Band

Conduction Band

V(x) = 2V_0 \cos(gx) = V_0e^{igx}+V_0e^{-igx}

GENERAL SOLUTION

INTRODUCTION TO THE PARABOLIC APPROXIMATION

k
E
-\frac{g}{2}
\frac{g}{2}
E_g

PARABOLIC APPROXIMATION: DIRECT BAND GAP

Electron in the valence band

Hole in the valence band

Electron in the conduction band

E_g
E_g
k = k - \frac{g}{2} \\ E = E - E_v

PARABOLIC APPROXIMATION: INDIRECT BAND GAP

Electron in the valence band

Hole in the valence band

Electron in the conduction band

E_g
E_g
E_{vert}
k

PARABOLIC APPROXIMATION: INDIRECT BAND GAP

E_g
E_{vert}
k

Conservation of energy and momentum

\begin{dcases} E = \hbar \Omega \\ p = \hbar k = \hbar \frac{\Omega}{v_{s}} \\ v_{s} = \frac{\Omega}{k} \\ \end{dcases}

Photon:

Lattice:

\begin{dcases} E = \hbar \omega \\ p = \hbar k = \hbar \frac{\omega}{c} \\ c = \frac{\omega}{k} \\ \end{dcases}

BAND GAP IN MATERIALS

MOMENTUM OF THE ELECTRONS IN THE LATTICE

k
E
-\frac{g}{2}
\frac{g}{2}
E_g

NON-DISPERSIVE WAVES PACKETS AND FOURIER TRANSFORMS

\hat{f}(k) = \frac{1}{\sqrt{\pi}} \int^{-\infty}_{\infty} f(x,0) e^{-ikx}
f(x,t) = \frac{1}{\sqrt{\pi}} \int^{-\infty}_{\infty} \hat{f}(k) e^{i(kx-\omega (k)t)}
v_g = \frac{d \omega (k)}{dk}

Group Velocity

NON-DISPERSIVE WAVES PACKETS AND FOURIER TRANSFORMS

v_{p} < v_{g}
v_{p} = v_{g}
v_{p} > v_{g}

MOMENTUM OF THE ELECTRONS IN THE LATTICE

k
E
-\frac{g}{2}
\frac{g}{2}
E_g
\begin{cases} v_g = \frac{d \omega (k)}{dk} \\ E = \hbar \omega \end{cases} \Rightarrow v_g = \frac{1}{\hbar}\frac{d E (k)}{dk} \\

MOMENTUM EXPECTATION VALUE

\begin{dcases} \varphi_{nk}(x) = e^{ikx}\sum_{g_n}c_{k-g_n}e^{-g_n x} \\ f_{nk}(x) = \sum_{g_n}c_{k-g_n}e^{-g_n x} \\ [\hat{p},\hat{H}] \neq 0 \end{dcases} \Rightarrow \begin{align*} \left\langle p\right\rangle &= \left\langle \varphi_{nk}(x)|\hat{p}| \varphi_{nk}(x)\right\rangle \\[10pt] & = \int_{-\infty}^{\infty} \varphi_{nk}^*(x)\left(-i \hbar \frac{\partial}{\partial x} \varphi_{nk}(x)\right) d x \\[10pt] & = \sum_{g_{n}}\left|c_{k-g_{n}}\right|^2 \hbar(k-g_{n}) \end{align*}
\left\langle p\right\rangle = \left\langle \sin \big(\frac{g}{2}x\big)|\hat{p}| \sin\big(\frac{g}{2}x\big)\right\rangle
\left\langle p\right\rangle = \left\langle \cos \big(\frac{g}{2}x\big)|\hat{p}| \cos\big(\frac{g}{2}x\big)\right\rangle

Valence Band

Conduction Band

PARABOLIC BANDS: EFFECTIVE MASSES

\begin{dcases} E_{v, c}(k) \approx E_{v, c}(0)+\frac{1}{1!} \frac{\partial E_{v, c}(0)}{\partial k} k+\frac{1}{2!} \frac{\partial^2 E_{v, c}(0)}{\partial k^2} k^2+\ldots \\ \frac{\partial E_{v, c}}{\partial k}(0)=0 \end{dcases}
\begin{dcases} E_v(k)=\frac{1}{2} \frac{\partial^2 E_v}{\partial k^2}(0) k^2 \\ E_c(k)=E_g+\frac{1}{2} \frac{\partial^2 E_c}{\partial k^2}(0) k^2 \end{dcases}
\begin{dcases} \frac{1}{m_{v}^*}=-\frac{1}{\hbar^2} \frac{\partial^2 E_{v}}{\partial k^2} \\ \frac{1}{m_{c}^*}=\frac{1}{\hbar^2} \frac{\partial^2 E_{c}}{\partial k^2} \end{dcases}

EFFECTIVE MASS AND ELECTRONICS

EFFECTIVE MASS: TOP500 AND CRAY

SEIMOUR CRAY AND THE CRAY-2

THE CRAY-3 RUNNING ON GaAs

Materials and Platforms for AI - Band Structure: Electronic and Optical Properties

By Giovanni Pellegrini

Materials and Platforms for AI - Band Structure: Electronic and Optical Properties

  • 139