Tensor Categories: Unifying Language of Symmetry
Why This Matters
Explores connections: TC ↔ Rep/Alg-Comb, AG/NT, Topology, Operator Algebras, VOAs.
Warm-up Categories
- **Vec_k**: tensor ⊗, unit 1, duals, symmetry.
- **Vec_G**: simples k_g, fusion rules, dual g⁻¹.
- **Rep(G)**: rigid, symmetric; Maschke (char 0).
- Edge to Semisimple Fusion: Fusion rules generalize character arithmetic.
Tannakian Snapshot
Tannaka (Deligne–Milne): fiber functor ω: C→Vec; G=Aut^⊗(ω); C≅Rep(G).
Symmetric Tensor Categories
Symmetric tensor categories with fiber functor ↔ affine group schemes.
Influences
- Saavedra-Rivano ’72
- Deligne (neutral Tannakian)
Number Theory/AG Edge
Fundamental group schemes, motives connect to number theory and algebraic geometry.
Applications of Tensor Categories
Impact on representation theory, quantum physics, and mathematical structures.
Future Directions
Exploring new connections and applications in mathematics and physics.
Tensor Categories: Unifying Language of Symmetry
By harshit11y
Tensor Categories: Unifying Language of Symmetry
- 8