Visualization for Explainable AI

Teamoverleg — 18 oktober

Dennis Collaris

              PhD Visualization

Data

Black

Box

Subject

80% risk

Why?

ML is often applied as a black box.

Global

Local

Overview

Global

Local

Fraud Dashboard

Overview

ExplainExplore

Global

Local

Fraud Dashboard

Overview

ExplainExplore

Contribution-Value Plots

Global

Local

Fraud Dashboard

Overview

ExplainExplore

CV Plots

Global

Local

Fraud Dashboard

StrategyAtlas

Overview

How?

Strategy A

Strategy B

The basic principle

How?

The basic principle

ID Name Age Sex Product Branch ...
1 💤 💤 💤 🔥 💤 ...
2 🔥 💤 💤 💤 🔥 ...
3 💤 🔥 💤 🔥 🔥 ...
... ... ... ... ... ... ...
ID Name Age Sex Product Branch ...
1 Alice 28 F Health Zekur ...
2 Bob 57 M Car FBTO ...
3 Chad 34 M Life Intrpls ...
... ... ... ... ... ... ...

2D projection

StrategyMap

feature contribution (LIME)

What?

Method 1: Heat map cluster analysis

Data

Model

What?

Method 2: Density plots

Data

Model

All data

Selection

What?

Method 3: Decision trees

Saved clusters  →

DT for selected cluster →

Performance comparison →

What?

Demo of the system

Paper submitted to:
IEEE Transactions on Visualization and Computer Graphics

 

 

sklearn-pmml-model

bit.ly/
sklearn-pmml

or

Other projects

Importing models from R to Python

Other projects

Fundamental research on expert interpretation of feature importance 

sklearn-pmml-model

bit.ly/
sklearn-pmml

or

explaining.ml

or

Links

Where you can find more information

Presentatie teamoverleg 18 oktober

By iamdecode

Presentatie teamoverleg 18 oktober

  • 35