Algorithms and Data structures

 

Lesson 1

$ whoami

Senior Software Engineer

I like JS, React, movies, music and I'm a big fan of LOTR and Star Wars 🤓

May the Force be with you!

6 years with GlobalLogic

about 8 years in Web Development

        GitHub page

Speaker and mentor at GL JS community

Part of the program committee at Fwdays

Inna Ivashchuk

Agenda:

  • Introduction
  • Is it necessary to learn Algorithms and Data structures?
  • Complexity theory
  • Types of algorithms

  • Practical examples using JavaScript

Introduction

    An algorithm is any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output. An algorithm is thus a sequence of computational steps that transform the input into the output.

What is an algorithm?

„Software gets slower faster than hardware gets faster.“
                                                      Niklaus Virt

Start

Did you learn  algorithms and data structures?

Time to learn 🤓

Congratulations 🥳

You are my hero

Resolved!

No

Yes

Let's check uses of Algorithms and Data structures

DOM: Tree

JS Event Loop: Heap, Queue, Stack

OS process priority: Heap & Priority Queue

Google Maps:  Dijkstra algorithm and Weighted Graph

Google Search:  Trie

Recommendation system/engine: Graph

....and many others

Is it necessary to learn Algorithms and Data structures?

"This is your chance to start learning Algorithms.

But after this, there is no turning back"

Yes?

No?

"Remember... All I'm offering is the truth, nothing more"

 "Yes", if you would like to

become a true Software Engineer

pass interviews in the best companies in the world

create quality (productive and reliable) products

be able to solve really difficult problems

receive significantly more than the market average

 Resources to train

 "No", if you prefer to

make simple websites

don't understand the meaning of LinkedList, Heap, Stack and etc.

work on simple tasks

create a not complicated web servers (CRUD)

don't care about code quality and productivity

Complexity theory

 Algorithm complexity

Big O notation, O

Omega notation, Ω

Theta notation, Θ

asymptotic notation, asymptotic complexity

O(n), O(log n), O(n * logn)

logarithmic polynomial

Don't be afraid

The complexity of an algorithm is a measure of the amount of time and/or space (memory) required by an algorithm for an input of a given size (n).

...it's just

Let's train on some JavaScript examples

...and the first example

// Find sum of all numbers in array
function sumNumbersInArray(arr) {
    let result = 0;
    
    for (let i=0; i < arr.length; i++) {
        result += arr[i];   
    }
    
    return result;    
}

// Test 1
sumNumbersInArray([1,2,3]);

// Test 2
sumNumbersInArray([1,2,3,4,5,6,7,8,9,10]);

Big O notation, O

Big O notation, O

Big O notation is a convenient way to describe how fast a function is growing. It is often used in computer science when estimating time complexity.

 

Let's try to analyze the an example

// Find sum of all numbers in array
function sumNumbersInArray(arr) {
    let result = 0;
    
    for (let i=0; i < arr.length; i++) {
        result += arr[i];   
    }
    
    return result;    
}

and the result

// Find sum of all numbers in array
function sumNumbersInArray(arr) {
    let result = 0;
    
    for (let i=0; i < arr.length; i++) {
        result += arr[i];   
    }
    
    return result;    
}

Data Input

Operations number

100

1000

10000

100

1000

10000

O(n)

Linear

Example 1

// Calculation
function calculate() {
  const a = 3 + 1;
  const b = 3 + 3;
  
  console.log('Calculating...');
   
  return a + b;    
}

calculate();

Let's analyze example 1

Data Input

Operations number

100

1000

10000

100

1000

10000

O(1)

Constant

Example 1.1

// Calculation
function calculate(c) {
  const a = 3 + 1;
  const b = 3 + 3;
  
  console.log('Calculating...');
   
  return a + b + c;    
}

calculate(3);

How about that? 

and it's still O(1)

Example 2

// Calculation
function calculate(arr) {
  const a = 3 + 1;
  const b = 3 + 3;
  
  let c = 0;
  
  for (let i = 0; i < arr.length; i++) {
    c += arr[i];
  }
  
  console.log('Calculating...');
   
  return a + b + c;    
}

calculate([1,2,3,4,5]);

result - O(n)

Example 3

// Calculation
function calculate(arr) {
  const a = 3 + 1;
  const b = 3 + 3;
  
  let c = arr.length;
  
  console.log('Calculating...');
   
  return a + b + c;    
}

calculate([1,2,3,4,5]);

result - O(1)

Example 4

// Calculation
function calculationInArray(arr) {
  
    for (let i = 0; i < arr.length; i++) {
      
        for (let j = 0; j < arr.length; j++) {
          
            arr[i] = arr[i] + arr[j];
          
        }
    }
    
    return arr;        

}

calculationInArray([1,2,3,4,5]);

Data Input

100

1000

10000

100

1000

10000

O(n2)

quadratic

Example 4 - is quadratic

Operations number

Example 5

// Calculation
function calculationInArray(arr) {
  const sum = 0;
  
  arr.forEach(n => {
    sum += n;
  });

  return sum;        

}

calculationInArray([1,2,3,4,5]);

result - O(n) 

Example 6

// Calculation
function calculationInArray(arr) {
  
    arr.forEach(n => console.log(n));
  
    for (let i = 0; i < arr.length; i++) {
      
        for (let j = 0; j < arr.length; j++) {
          
            arr[i] = arr[i] + arr[j];
          
        }
    }
    
    return arr;        

}

calculationInArray([1,2,3,4,5]);

result - O(n) + O(n2) = O(n2)

Example 7

// Calculation
function probablySimpleCalculation(arr) {
    let result = 0;

    arr.forEach(num => {
        const additional = arr.indexOf(num) > 5 ? 5 : 1;

        result = result + num + additional;

    });

    return result;
}

probablySimpleCalculation([1,2,3,4,5,6,7,8]);

result - O(n2), because of indexOf()

Example 7 can be improved

// Calculation
function probablySimpleCalculation(arr) {
    let result = 0;

    arr.forEach((num, index) => {
        const additional = index > 5 ? 5 : 1;

        result = result + num + additional;

    });

    return result;
}

probablySimpleCalculation([1,2,3,4,5,6,7,8]);

result - O(n)

Function growing in numbers

O(1) - 1

Input data - 10000 items

O(n) - 10 000

O(n2) - 100 000 000

O(n3) - 1 000 000 000 000

O(n!) - 100 000 000 000 000 0000 000 000 000000 000 0000 0000 000000 000 000 000 000000 0000000 000000 00000.....

FYI: log 1 = 0; log 10 = 1; log 100 = 2

Big O: Phone book example

  • O(1) (best case): Given the page that a person's name is on and their name, find the phone number.

  • O(log n): Given a person's name, find the phone number by picking a random point about halfway through the part of the book you haven't searched yet, then checking to see whether the person's name is at that point. Then repeat the process about halfway through the part of the book where the person's name lies. (This is a binary search for a person's name.)

  • O(n): Given a phone number, find the person or business with that number.

  • O(n log n): There was a mix-up at the printer's office, and our phone book had all its pages inserted in a random order. Fix the ordering so that it's correct by looking at the first name on each page and then putting that page in the appropriate spot in a new, empty phone book.

  • O(n2): A mistake occurred at the office, and every entry in each of the phone books has an extra "0" at the end of the phone number. Take some white-out and remove each zero.

Types of algorithms and their uses

Types of Algorithm

There are many types of Algorithms, but the fundamental types of Algorithms are:

Recursive Algorithm

Dynamic Programming Algorithm

Divide & Conquer Algorithm

Greedy Algorithm

Brute Force Algorithm

Backtracking Algorithm

Brute Force Algorithm

This is the most basic and simplest type of algorithm. A Brute Force Algorithm is the straightforward approach to a problem i.e., the first approach that comes to our mind on seeing the problem. More technically it is just like iterating every possibility available to solve that problem.

function bruteForceSubstringSearch(text, pattern) {
    const textLength = text.length;
    const patternLength = pattern.length;
  
    for (let i = 0; i < textLength; i++) {
        let j;
        for (j = 0; j < patternLength; j++) {
            if (text.charAt(i + j) !== pattern.charAt(j)) {
                   break;
            }
        }
        if (j === patternLength) return i;
    }
    return textLength;
}

bruteForceSubstringSearch('this is a test', 'test');

Recursive Algorithm

This type of algorithm is based on recursion. In recursion, a problem is solved by breaking it into subproblems of the same type and calling own self again and again until the problem is solved with the help of a base condition.

Some common problem that is solved using recursive algorithms: Factorial of a Number, Fibonacci Series, Depth first search for Graph, etc.

// calculate n! using recursion
function factorial(n) {
    if (n <= 1) {
        return 1;
    } else {
        return factorial(n-1) * n;
    }
 }


factorial(5);

Divide & Conquer Algorithm

   Divide and conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type until these become simple enough to be solved directly.


Applications: Binary Search, Quicksort, Merge Sort, Median Finding, Matrix Multiplication, Closest Pair of Points, Strassen’s Algorithm and etc.

Divide & Conquer Algorithm: Quicksort

const items = [5,3,7,6,2,9];

function quickSort(items, left, right) {
    let index;
    if (items.length > 1) {
        //index returned from partition
        index = partition(items, left, right);
        //more elements on the left side of the pivot
        if (left < index - 1) {
            quickSort(items, left, index - 1);
        }
        //more elements on the right side of the pivot
        if (index < right) {
            quickSort(items, index, right);
        }
    }
    return items;
}

function swap(items, leftIndex, rightIndex){
    const temp = items[leftIndex];
    items[leftIndex] = items[rightIndex];
    items[rightIndex] = temp;
}

function partition(items, left, right) {
    //middle element
    const pivot   = items[Math.floor((right + left) / 2)],
        i       = left, //left pointer
        j       = right; //right pointer
    while (i <= j) {
        while (items[i] < pivot) { i++; }
        while (items[j] > pivot) { j--; }
        if (i <= j) {
            swap(items, i, j); //sawpping two elements
            i++;
            j--;
        }
    }
    return i;
}

// first call to quick sort
const sortedArray = quickSort(items, 0, items.length - 1);
console.log(sortedArray); //prints [2,3,5,6,7,9]

Divide & Conquer Algorithm: Palindrome

function palindrome(str) {
  const len = str.length;
  
  for (var i = 0; i < len/2; i++) {
     if (str[i] !== str[len - 1 - i]) {
       // When the characters don't match anymore,
       // false is returned and we exit the FOR loop
       return false;
    }
  }
  
  return true;
}

sagas => sagas

tenet => tenet

Divide & Conquer Algorithm: Binary Search

function binarySearch(items, value){
    let firstIndex  = 0,
        lastIndex   = items.length - 1,
        middleIndex = Math.floor((lastIndex + firstIndex)/2);

    while(items[middleIndex] != value && firstIndex < lastIndex) {
      
       if (value < items[middleIndex]) {
            lastIndex = middleIndex - 1;
        } else if (value > items[middleIndex]) {
            firstIndex = middleIndex + 1;
        }
      
        middleIndex = Math.floor((lastIndex + firstIndex)/2);
    }
  
    return (items[middleIndex] != value) ? -1 : middleIndex;
}

const items = [1, 2, 3, 4, 5, 7, 8, 9];

console.log(binarySearch(items, 1));
console.log(binarySearch(items, 5));

Dynamic Programming Algorithm

    Dynamic Programming is mainly an optimization over plain recursion, as a recursive solution can optimize it using Dynamic Programming. The idea is to simply store the results of subproblems so that we do not have to re-compute them when needed later.

Applications:  Fibonacci Sequence, Longest Common Subsequence, Longest Increasing Subsequence, Longest Common substring, Bellman-Ford algorithm, Chain Matrix multiplication, Subset Sum and etc.

Dynamic Programming Algorithm: Fibonacci sequence

// recursive way
function fibonacci(num) {
  if (num <= 1) return 1;

  return fibonacci(num - 1) + fibonacci(num - 2);
}

fibonacci(51);
// using memoization
function fibonacci(num, memo) {
  memo = memo || {};

  if (memo[num]) return memo[num];
  if (num <= 1) return 1;

  return memo[num] = fibonacci(num - 1, memo) + fibonacci(num - 2, memo);
}

fibonacci(51);
  • Time complexity: O(2n)
  • Space complexity: O(n)
  • Function calls: 20.365.011.074
  • Time needed: 176.742ms
  • Time complexity: O(2N)
  • Space complexity: O(n)
  • Function calls: 99
  • Time needed: 0.000001ms

Backtracking Algorithm

Backtracking is an algorithmic technique for solving problems recursively by trying to build a solution incrementally, one piece at a time, removing those solutions that fail to satisfy the constraints of the problem at any point of time (by time, here, is referred to the time elapsed till reaching any level of the search tree).

Applications: Generating all Binary strings, N-Queens Problem, Knapsack Problem, Graph coloring Problem and etc.

Greedy Algorithm

    Greedy is an algorithmic paradigm that builds up a solution piece by piece, always choosing the next piece that offers the most obvious and immediate benefit. So the problems where choosing locally optimal also leads to a global solution are best fit for Greedy.

Applications: Huffman Coding Compression, Travelling Salesman Problem, Selection Sort, Topological sort, Prim’s & Kruskal’s algorithms, Coin Change problem, Fractional Knapsack Problem and etc.

Greedy Algorithm: Huffman Coding Compression

class Node {
  constructor(count, char, left, right) {
    this.count = count;
    this.char = char;
    this.left = left;
    this.right = right;
  }
}

class HuffmanCoding {
  constructor() {
    this.code = {};
    this.leafs = null;
    this.histogram = {};
    this.tree = null;
  }

  createHistogram(input) {
    const histogram = {};

    for (let i = 0; i < input.length; i++) {
      const code = input.charCodeAt(i);
      ++histogram[code];
    }

    this.histogram = histogram;
  }

  // creates the forest with one tree for every char
  createLeafs(histogram) {
    this.leafs = Object.entries(histogram).map(([code, freq]) => {
      const char = String.fromCharCode(code);
      return new Node(freq, char, null, null);
    });
  }

  // splits trees into small and big
  splitTrees(forest) {
    const sorted = forest.sort((a, b) => a.count - b.count);
    const small = sorted.slice(0, 2);
    const big = sorted.slice(2);
    return [small, big];
  }

  createTree(forest) {
    if (forest.length === 1) return forest[0];
    const [small_trees, big_trees] = this.splitTrees(forest);
    const new_tree = new Node(
      small_trees[0].count + small_trees[1].count,
      null,
      small_trees[0],
      small_trees[1]
    );
    const new_trees = [...big_trees, new_tree];

    return this.createTree(new_trees);
  }

  isASCII(str) {
    const test = /^[\x00-\x7F]*$/.test(str);
    return test;
  }

  // Creates the code-words from the created huffman-tree
  createCode(prefix, node) {
    // empty root node
    if (!node) return {};
    // leaf node
    if (!node.left && !node.right) {
      return { [node.char]: prefix };
    }
    // recursive call
    return {
      ...this.createCode(prefix + "0", node.left),
      ...this.createCode(prefix + "1", node.right),
    };
  }

  encode(string) {
    if (!this.isASCII(string)) {
        return 'Invalid text';
    }

    this.createHistogram(string);
    this.createLeafs(this.histogram);
    const tree = this.createTree(this.leafs);
    const code = this.createCode("", tree);

    const encoded = Array.from(string).map((c) => code[c]);

    return {
        output: encoded,
        code,
      };
  }
}

const huff = new HuffmanCoding();
console.log(huff.encode('Hello there'));

Practical examples

Task 1

const itemsArray = [
  { a: 1, b: 3 },
  { a: 3, b: 3 },
  { a: 6, b: 3 },
  { a: 10, b: 10 },
  { a: 41, b: 1 },
  { a: 0, b: 4 }
];

function filterAndExtendItems(array) {}

We need to filters an array of objects and keep only items, where a > 5 and extend them with a new field sum = a + b

Task 1: solution

const itemsArray = [
  { a: 1, b: 3 },
  { a: 3, b: 3 },
  { a: 6, b: 3 },
  { a: 10, b: 10 },
  { a: 41, b: 1 },
  { a: 0, b: 4 }
];

function filterAndExtendItems(items) {
  return items.reduce((acc, item) => {
    if (item.a > 5) {
      acc.push({
        ...item,
        sum: item.a + item.b,
      });
    }

	return acc;
  }, [])
}

Task 2

const inputStr = "Remember, all I'm offering is the truth. Nothing more.";

function calcStringSymbols(str, symbol) {}

We need to calculate the amount of a given symbol in a given string

Task 2: solution

const inputStr = "Remember, all I'm offering is the truth. Nothing more.";

function calcStringSymbols(str, symbol) {
  let amount = 0;
  
  for(let i=0; i<str.length; i++) {
    if (str.charAt(i) === symbol) {
      amount += 1;
    }
  }

  return amount;
}

calcStringSymbols(inputStr, 'm'); // 4

Task 2: solution using Divide & Conquer

const inputStr = "Remember, all I'm offering is the truth. Nothing more.";

function calcStringSymbolsWithDC(str, symbol) {
  let amount = 0;
  const len = str.length;

  for(let i=0; i < len/2; i++) {
    if (str.charAt(i) === symbol) {
      amount += 1;
    }     

    if (str.charAt(len - i - 1) === symbol) {
      amount += 1;
    } 
  }

  return amount;
}

calcStringSymbolsWithDC(inputStr, 'm'); // 4

Task 3

const config = {
  audio: {
    id: 1,
    type: 'playlist',
  },
  video: {
    id: 2,
    format: '4k',
  },
  book: {
    id: 3,
    store: 'yakaboo',    
  },
  podcast: {
    id: 4,
    online: true,    
  },
};

function getProductConfig(type, cb) {}

We need to call a given callback function with different config, based on a given product type

Task 3: solution

const config = {
  audio: {
    id: 1,
    type: 'playlist',
  },
  video: {
    id: 2,
    format: '4k',
  },
  book: {
    id: 3,
    store: 'yakaboo',    
  },
  podcast: {
    id: 4,
    online: true,    
  },
};

function getProductConfig(type, cb) {
  return cb(config[type] || {});
}

We need to call a function with different config, based on a given product type

Task 4

const itemsArrayN = [
    { n: '1' },
    { n: '2' },
    { n: '3' },
    { n: '4' },
    { n: '5' },
];

function reverse(array) {}

Reverse an array with items

Task 4: solution

const itemsArrayN = [
    { n: '1' },
    { n: '2' },
    { n: '3' },
    { n: '4' },
    { n: '5' },
];

function reverse(array) {
  return arr.reduceRight((acc, curr) => acc.concat(curr), [])
}

More algorithms are written using JavaScript:

Quiz time

Flowchart for algorithms representation

What is Flowchart?

A flowchart is a type of diagram that represents a workflow or process. A flowchart can also be defined as a diagrammatic representation of an algorithm, a step-by-step approach to solving a task.

Start

What to do?

Time to learn 🤓

Time to eat 😋

Lamp doesn't work

Lamp plugged in?

Plug in lamp

No

Replace bulb

Yes

Bulb burned out?

Repair lamp

Yes

No

Types

  • Document flowcharts, showing controls over a document-flow through a system
  • Data flowcharts, showing controls over a data-flow in a system
  • System flowcharts, showing controls at a physical or resource level
  • Program flowchart, showing the controls in a program within a system

In addition, many diagram techniques are similar to flowcharts but carry a different name, such as UML or activity diagrams.

UML

Flowchart of a Web application

Building blocks: common symbols


Flowline (Arrowhead)
Shows the process's order of operation. A line coming from one symbol and pointing at another

Terminal
Indicates the beginning and ending of a program or sub-process

Process
Represents a set of operations that changes value, form, or location of data

Decision
Shows a conditional operation that determines which one of the two paths the program will take

Input/Output
Indicates the process of inputting and outputting data, as in entering data or displaying results

ANSI / ISO shape

Name

Description

Building blocks: other symbols


Data File or Database
Data is represented by a cylinder symbolizing a disk drive.

Document
Single or multiple documents represented as a stack of rectangles with wavy bases 

Manual operation
Represent an operation or adjustment to a process that can only be made manually

Manual input
Represented by quadrilateral, with the top irregularly sloping up from left to right, like the side view of a keyboard

Preparation or initialization
Originally used for steps like setting a switch or initializing a routine
 

Shape

Name

Description

As an example let's build a flowchart, that represents the sum operation

Start

sum = a + b

Enter numbers

a and b

Display sum

End

terminal

process

input and output

Start

Enter numbers

a and b

Display result

End

And now let's try to create a flowchart for the division operation

b is not equal to 0

b number is not valid

Yes

No

result = a / b

Before we go further, let's become familiar with Flowcharts

Algorithms and Data structures: Part 1

By Inna Ivashchuk

Algorithms and Data structures: Part 1

  • 1,351