Congruence

2020 James B. Wilson

Colorado State University

 

Homomorphisms

Quotients

Without Algebra...

Equivalence

Function

Partition

Without Algebra...

\(a\equiv a\),

\(a\equiv b\Rightarrow b\equiv a\),

\(a\equiv b,b\equiv c\Rightarrow a\equiv c\)

\(f:A\to B\)

\(A\leftrightarrow \bigsqcup_{b:B} P_b\)

\(P_b=\{a\mid a\equiv b\}\)

\(a\mapsto P_b\), \(a\in P_b\)

\(a\equiv b\pmod{f}\Leftrightarrow f(a)=f(b)\)

With Algebra...

Congruence

Homomorphism

Quotients

Know as: The Fundamental Homomorphism Theorem

With Algebra...

\[\begin{array}{c}a\equiv a'\\b\equiv b'\\ \hline a*b\equiv a'*b'\end{array}\]

\(f(a*b)=f(a)*f(b)\)

\[x\in P_a,y\in P_b\]

\[\Rightarrow x*y\in P_{a*b}\]

\(P_b=\{a\mid a\equiv b\}\)

\(A/_{\equiv}:=\{P_b\mid b\in A\}\)

\(a\mapsto P_b\), \(a\in P_b\)

\(a\equiv b\pmod{\ker f}\Leftrightarrow f(a)=f(b)\)

(Illustrated for binary operations only.)

Keywords...

Modulo

Kernel

Coset

Fundamental Homomorphism Theorem

By James Wilson

Fundamental Homomorphism Theorem

Congruences=>Quotients=>Homomorphisms=>Congruences

  • 466