Geometric Algebras
2020 James B. Wilson
Colorado State University
Objectives
- Identify qualities of scientific algebraic systems.
- Composition algebras & Hurwitz's Theorem
- Scaling with Linear Algebra
- Matrix rings & Groups
- Classical Lie & Jordan algebras, & Groups
Essentials of a scientist's number system
- Robust Arithmetic: enough to state meaningful equations \(\cdot,\div,1,+,-,0\)
- Algebraically Closed: enough numbers to solve equations even if some solutions later ignored.
-
Geometry: connect measurement to algebra
- Triangle inequality \(|a+b|\leq |a|+|b|\)
- Scaling property \(|a\cdot b|=|a|\cdot |b|\)
- Unbounded Dimensions to capture large systems.
Composition Algebras
Arithmetic+Measurement
Hurwitz' Theorem.
Composition Algebra: \(A\) has length & \([*,1,\div,+,-,0]\)-arithmetic
- +,-,0 are an abelian group,
- multiplication distributes, and
- length (quadratic norm) satisfies \(|\alpha\beta|=|\alpha||\beta|.\)
Theorem( Hurwitz) There 4 families like this:
- A field
- A quadratic field extension
- Quaternions
- Octonions
Cyclotomic Quadratic Extensions
Let \(K\) be a field, think \(\mathbb{R}\) or \(\mathbb{Q}\). Choose \(\alpha\in K\).
- Define \(\left(\frac{\alpha}{K}\right)=K\times K\) with vector addition, \(\hat{1}:=(1,0)\) and \(i=(0,1)\); and
- Multiplication: \[\begin{array}{c|cc} * & c\hat{1} & di \\ \hline a\hat{1} & ac\hat{1} & adi \\ bi & bci & \alpha bd\hat{1}\end{array}\]
- \(\overline{a+bi}=a-bi\) "conjugation".
Loose Order: \(i\not\leq 0\) and \(0\not \leq i\)
Cyclotomic Quadratic extensions.
- \[\mathbb{C}\cong \left(\frac{-1}{\mathbb{R}}\right)\cong \left(\frac{-13}{\mathbb{R}}\right)\cong \mathbb{R}[x]/(x^2+1)\cong \cdots\]
- \[\mathbb{R}\times \mathbb{R}\cong \left(\frac{1}{\mathbb{R}}\right)\cong \left(\frac{13}{\mathbb{R}}\right)\cong \mathbb{R}[x]/(x^2-1)\cong \cdots\]
- \[\mathbb{Q}[i]\cong \left(\frac{-1}{\mathbb{Q}}\right)\not\cong \left(\frac{13}{\mathbb{Q}}\right)\cong \mathbb{Q}[\sqrt{13}]\not \cong \left(\frac{4}{\mathbb{Q}}\right)\cong \mathbb{Q}\times \mathbb{Q}\]
not always a field, but always quadratic.
Quatnerions
Fix a \(\left(\frac{\alpha}{K}\right)\) choose \(\beta\in K\).
- Define \(\left(\frac{\alpha,\beta}{K}\right)=\left(\frac{\alpha}{K}\right)\times \left(\frac{\alpha}{K}\right)\) with vector addition, \(\hat{1}:=(\hat{1},0)\) and \(j=(0,\hat{1})\); and
- Multiplication: \[\begin{array}{c|cc} * & c\hat{1} & dj \\ \hline a\hat{1} & ac\hat{1} & adj \\ bj & b\bar{c}j & \beta b\bar{d} \hat{1} \end{array}\]
- \(\overline{a+bj}=\bar{a}-\bar{b}j\) "conjugation".
Loose commutative: \(ij=-ji\)
i
j
ij
Octonions
Fix a \(\left(\frac{\alpha,\beta}{K}\right)\) choose \(\gamma\in K\).
- Define \(\left(\frac{\alpha,\beta,\gamma}{K}\right)=\left(\frac{\alpha,\beta}{K}\right)\times \left(\frac{\alpha,\beta}{K}\right)\) with vector addition, \(\hat{1}:=(\hat{1},0)\) and \(\ell=(0,\hat{1})\); and
- Multiplication: \[\begin{array}{c|cc} * & c\hat{1} & dj \\ \hline a\hat{1} & ac\hat{1} & da\ell \\ b\ell & b\bar{c}\ell & \beta \bar{d}b \hat{1} \end{array}\]
- \(\overline{a+bj}=\bar{a}-\bar{b}\ell\) "conjugation".
Loose Associativity: \(i(j\ell)=-(ij)\ell\)
\(i\)
\(j\)
\(ij\)
\(\ell\)
\(\ell\)
\(i\ell\)
\(j\ell\)
\((ij)\ell\)
So 4 essential geometries!
- Orthogonal A field \(K\)
- Unitary a quadratic field extension \[\left(\frac{\alpha}{K}\right)=K[\sqrt{\alpha}],\qquad K\times K\]
- Symplectic a quaternion extension \[\left(\frac{\alpha,\beta}{K}\right)=\mathbb{H}, \quad \mathbb{M}_2(K)\]
- Exceptional an octonion extension \[\left(\frac{\alpha,\beta,\gamma}{K}\right)=\mathbb{O}\qquad ...\]
Composition Algebra Summary
- Link geometry to algebra with \[|z|=z\bar{z}\]
- Then there are 4 families
- Fields/Orthogonal
- Quadratic Fields/Unitary
- Quatnions/Symplectic
- Octonions/Exceptional
Matrix rings
Boost the dimensions of composition algebras
Fix a ring \(K\), e.g. \(\mathbb{Z}\) or \(\mathbb{Q}, \mathbb{R},\mathbb{Q}[x],\cdots\)
\[\mathbb{M}_n(K)=\left\{\begin{bmatrix}A_{11}&\cdots & A_{1n}\\ \vdots & & \vdots\\ A_{n1} & \cdots & A_{nn}\end{bmatrix}\middle| A_{ij}\in K\right\}\]
- Addition: \([A+B]_{ij} = A_{ij}+ B_{ij}\)
- Minus: \([-A]_{ij}=-A_{ij}\)
- Zero: \([0]_{ij}=0\)
- Product: \([A\cdot B]_{ij}=\sum_{k=1}^n A_{ik}B_{kj}\).
- Generators \(E_{ij}=e_i^t e_j\)
- One: identity matrix \(I_n=E_{11}+\cdots+E_{nn}\)
Laws
- Addition by Direct Product: \(\mathbb{M}_n(K)\cong \prod_{i=1}^n \prod_{j=1}^n K\) as a \([+,-,0]\)-algebraic structure (abelian group). By variety rules \(\mathbb{M}_{n^2}(K)\) is abelian group.
-
Multiplication Laws must be proved directly
- distributive,
- associative,
- identity
\[\begin{aligned} [A\cdot(B+C)]_{ij} & = \sum_{k=1}^n A_{ik}(B+C)_{kj}\\ & = \sum_{k=1}^n A_{ik}(B_{kj}+C_{kj})\\ & = \sum_{k=1}^n (A_{ik}B_{kj}+A_{ik}C_{kj})\\ &= \sum_{k=1}^n A_{ik}B_{kj}+\sum_{k=1}^n A_{ik}C_{kj}\\ & = [A\cdot B]_{ij}+[A\cdot C]_{ij} \end{aligned}\]
Congruences/Quotients
- If \(K\) has a quotient \(K/_{\sim}\) then \(\mathbb{M}_{n}(K)/_{\sim}\) exists where \[A\sim B\Longleftrightarrow \forall i\forall j.(A_{ij}\sim B_{ij})\]
- E.g. \(\mathbb{M}_n(\mathbb{Z})\) has quotients \(\mathbb{M}_n(\mathbb{Z})/_{\sim}\cong \mathbb{M}_n(\mathbb{Z}/n)\), but what if \(K\) has not quotients, e.g. \(K\) a field?
- Theorem (Wedderburn). If \(K\) is a field or division ring then \(\mathbb{M}_n(K)\) is simple (has only the two trivial congruences.)
Proof. Suppose there is a square matrix \(M\) that is nonzero but \(M\sim 0\). There are matrices \(X,Y\in \mathbb{M}_n(K)\) where \[0\sim X0Y\sim XMY=\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}=:E\] where r is the rank of \(M\) (i.e. row and col. reduce this is where we assume inverses of nonzero coefficients). And so in fact \[0\sim E_{11}\cdot E=E_{11}\]
Chose permutation matrices \(\Sigma\) so that \[0\sim \Sigma E_{11}\Sigma^{-1}=E_{ii}.\]
Thus \[0\sim E_{11}+\cdots+E_{nn}=I_n\]
Finally \[\forall X.(0\sim (X\cdot I_n)=X)\]
So if \(\exists M.(M\neq 0)\wedge(0\sim M)\Rightarrow \forall M.(0\sim M).\)
Remark for the future...
- There is a notion of a one-sided congruence: \[x\equiv y \Rightarrow rx\equiv ry\]
- If you shift to one side \(x-y\equiv 0\) you get a subalgebra \[I=\{z\mid z\equiv 0\}\]
- \(I\) is a left ideal \[\begin{aligned} x,y\in I & \Rightarrow x+y\in I\\ r\in R, x\in I & \Rightarrow rx\in I \end{aligned}\]
- You get equivalence classes that have "half" the algebra, it is called a "module".
When do you get Linear Algebra?
- Be careful! There are \(K\) where \(\mathbb{M}_2(K)\cong \mathbb{M}_3(K)\). Not common but still exist.
- Be careful! Determinants only defined if \(K\) is a commutative.
- Be careful! Minimum polynomial, characteristic polynomial unique if \(K\) is a field.
Matrix Ring Summary
- \(\mathbb{M}_n(K)\) is a ring, addition by theorems, multiplication is a fresh start.
- Homomorphisms/Quotients include \(\mathbb{M}_n(K)\to \mathbb{M}_n(K/_{\sim})\)
- [Wedderburn] \(\mathbb{M}_n(K)\) is simple if \(K\) is field or division ring.
- Method of proof think of linear algebra but check because lots of LA falls apart.
Adding geometry?
Respect the dot-product!
Dot product:
\[u*v=u_1v_1+\cdots+u_n v_n=[u_1,\ldots,u_n]\begin{bmatrix} v_1\\ \vdots \\ v_n\end{bmatrix}=u^t v\]
More generally:
\[u*v=[u_1,\ldots,u_n]D\begin{bmatrix} v_1\\ \vdots \\ v_n\end{bmatrix}=u^tD v\] where \(D^t=D\)
Even more generally:
\[u*v=[u_1,\ldots,u_n]D\begin{bmatrix} \bar{v}_1\\ \vdots \\ \bar{v}_n\end{bmatrix}=u^tD \bar{v}\] where \(D^t=\pm\bar{D}\)
Why \((Au)*v=\pm u*(Av)\)?
\(u*v=u^t D v\) so
\[(Au)*v=(Au)^tD v=u^t (A^t D)v\]
\[u*(Av)=u^t D (Av)=u^t (DA) v\]
\((Au)*v=u*(Av)\Longleftrightarrow A^tD=DA\)
\((Au)*v=u*(Av)\Longleftrightarrow A^tD=D\bar{A}\)
Why \((Au)*v=\pm u*(Av)\)?
Defn. \(u\perp v\) if \(u*v=0\)
Lemma. \((Au)*v=u*(Av)\) implies \(Null(A)\perp Im(A)\)
Proof. \(Au=0\Rightarrow 0=(Au)*v=u*(Av).\)
So these matrices turn geometry into algebra!
Lemma. \((Au)*(Av)=u*v\) (length does not change "isometry") if, and only if, \((Au)*v=u*(\bar{A}^tv)\) and \(A\) is invertible. I.e. \(A\bar{A}^t=I\)
Geometry\(\to\) Algebra
- Break into Symmetric & Skew-symmetric
- Symmetric = \(\frac{1}{2}(A+\bar{A}^t)\)
- Skew-symmetric =\(\frac{1}{2}(A-\bar{A}^t)\)
\[A=\frac{1}{2}(A+\bar{A}^t)+\frac{1}{2}(A-\bar{A}^t)\]
So no information lost (except when 2=0!)
Classical Jordan Algebras
Matrices with orthogonal geometry
- \(K\) is a field (so we get linear algebra),
- Dot-product: \(u*v=u^t v\) on \(K^n\)
Hermitian Jordan algebras
\[\begin{aligned}\mathfrak{jo}_n(*) & = \{ A\in\mathbb{M}_n(K)\mid (Au)*v=u*(Av)\}\\ & = \{ A\in\mathbb{M}_n(K)\mid A^t=A\}\end{aligned}\]
Addition as in matrices, product \(A\bullet B=\frac{1}{2}(AB+BA)\).
\[\begin{aligned} (A\bullet B)^t & = \left(\frac{1}{2}(AB+BA)\right)^t\\ & = \frac{1}{2}((AB)^t+(BA)^t)\\ & = \frac{1}{2}(B^t A^t+A^t B^t)\\ & = \frac{1}{2}(BA+AB)\\ &= \frac{1}{2}(AB+BA)=A\bullet B.\end{aligned}\]
Why 1/2? \[(A\bullet I)=\frac{1}{2}(AI+IA)=\frac{1}{2}(2A)=A\]
Laws?
- \(A\bullet B=B\bullet A\)
- \(A\bullet I=A\)
- \((A\bullet A)\bullet (B\bullet A)=((A\bullet A)\bullet B)\bullet A\)
Classical Lie Algebras
Matrices with orthogonal geometry
- \(K\) is a field (so we get linear algebra),
- Dot-product: \(u*v=u^t v\) on \(K^n\)
Orthogonal Lie algebras
\[\begin{aligned}\mathfrak{0}_n(*) & = \{ A\in\mathbb{M}_n(K)\mid (Au)*v=-u*(Av)\}\\ & = \{ A\in\mathbb{M}_n(K)\mid A^t=-A\}\end{aligned}\]
Addition as in matrices, product \([A, B]=(AB-BA)\).
\[\begin{aligned} [A, B]^t & = (AB-BA)^t\\ & = (AB)^t-(BA)^t\\ & = B^t A^t-A^t B^t\\ & = (-B)(-A)-(-A)(-B)\\ &= -(AB-BA)\\ & =-[A,B]\end{aligned}\]
Why no 1/2? \[[A,I]=(AI-IA)=0\]
Laws?
- "Altenrating" \([A,A]=0\)
- \([A,B]=-[B,A]\)
- "Jacobi" \([A,[B,C]]=[[A,B],C]+[B,[A,C]]\)
Physics trick...
- Suppose \(A^t=\bar{A}\) and \(B^t=\bar{B}\), which is a form of "symmetric matrices" so ought to be Jordan.
- Sly trick: \[[A,B]=i(AB-BA)\]
\[\begin{aligned} [A, B]^t & = (i(AB-BA))^t\\ & = \bar{i}((AB)^t-(iBA)^t)\\ & = -i(\bar{B}\bar{A}-\bar{A}\bar{B})\\ & = i (\bar{A}\bar{B}-\bar{B}\bar{A}) \\ &= i\overline{(AB-BA)}\\ & = - \overline{i(AB-BA)}\\ & =-\overline{[A,B]}\end{aligned}\]
Hence: \(i\) sprinkled everywhere in quantum,e.g. Schrodinger
General Hermitian Geometry
- \(K\) is a field with \(\overline{a+bi}=a-bi\), for some \(i\).
- Hermitian dot-product: \(u*v=\bar{u}^t D v\), \(D=\bar{D}^t\)
Unitary Lie algebras
\[\begin{aligned}\mathfrak{L}_n(*) & = \{ A\in\mathbb{M}_n(K)\mid (u\bar{A}^t)*v+u*(Av)=0\}\\ & = \{ A\in\mathbb{M}_n(K)\mid \bar{A}^tD=-DA\}\end{aligned}\]
Addition as in matrices, product \([A, B]=(AB-BA)\).
Hermitian Jordan algebras
\[\begin{aligned}\mathfrak{H}_n(*) & = \{ A\in\mathbb{M}_n(K)\mid (u\bar{A}^t)*v=u*(Av)\}\\ & = \{ A\in\mathbb{M}_n(K)\mid \bar{A}^tD=DA\}\end{aligned}\]
Addition as in matrices, product \(A\bullet B=\frac{1}{2}(AB+BA)\).
E.g. Symplectic (quaternion) geometry
- \(K\) is a field (so we get linear algebra),
- Hermitian dot-product: \(u*v=\bar{u}^t J v\) on \(K^n\), \(J=\begin{bmatrix} 0 & I_m\\ -I_m & 0 \end{bmatrix}\)
Symplectic Jordan algebras
\[\begin{aligned}\mathfrak{H}_{2m}(K) & = \{ A\in\mathbb{M}_{2m}(K)\mid A^t=JAJ^{-1}\}\end{aligned}\]
Symplectic Lie algebras
\[\begin{aligned}\mathfrak{sp}_{2m}(K) & = \{ A\in\mathbb{M}_{2m}(K)\mid A^t=-JAJ^{-1}\}\end{aligned}\]
\[\mathbb{M}_m(\mathbb{H})\cong\mathfrak{H}_{2m}(K)\oplus\mathfrak{sp}_{2m}(K)\] where \(\mathbb{H}\) is Hamilton's quatnerions.
Laws
- Addition, sometimes a direct product, but careful not on the diagonal! I.e. \(A_{ii}=\bar{A}_{ii}\). So in unitary cases needs special purpose study of laws.
- Multiplication laws are far more complicated. \[A\bullet B=B\bullet A\qquad A\bullet I_n=A\] \[[A,A]=0\qquad [A,B]=-[B,A]\]\[(A\bullet A)\bullet (B\bullet A)=(((A\bullet A)\bullet B)\bullet A\] \[[[A,B],C]=[B,[A,C]]+[A,[B,C]]\]
Congruences
These algebras are simple! They are therefore key building blocks of geometry.
If you go into science, get to know these algebras
Important Groups & Loops
Derived form composition algebras
Take invertible elements!
- Field, units are the nonzeros.
- Better yet, take group of length 1:
- \[U(A)=\{z\in A\mid |z|=1\}\]
- \[z,w\in U(A)\Rightarrow |zw|=|z||w|=1\Rightarrow zw\in U(A)\]
Boring start \(U(\mathbb{R})=\{z\mid |z|=1\}=\{\pm 1\}\cong \mathbb{Z}/2\) but with complex gets interesting....
- \[\begin{aligned} U(\mathbb{C})& =\{z\mid |z|=1\}\\ & =\{a+bi\mid 1=|a+bi|=(a+bi)(a-bi)=a^2+b^2\}\\ & = S^1\end{aligned}\]
- which you know because unit circle is \(e^{i\theta}=\cos\theta+i\sin\theta\).
- I.e. group is \[e^{i\theta}e^{i\tau}=e^{i(\theta+\tau)}\]
Try with quaternions.
- \[\begin{aligned} U(\mathbb{H})& =\{z\mid |z|=1\}\\ & =\{a+bi+cj+dk\mid 1=a^2+b^2+c^2+d^2\}\\ & = S^3\end{aligned}\] which you may know from i,j,k rotation in graphics
- Super important subgroup (right-hand rule group) is \[Q_8=\{\pm 1, \pm i,\pm j,\pm k\}\] "The Quaternion group"
Try with octonions...
- \[\begin{aligned} U(\mathbb{Q})& =\{z\mid |z|=1\}\\ & =\{a+bi+cj+dk+e\ell+f(i\ell)+g(j\ell)+h(k\ell) \\ & \quad \mid 1=a^2+b^2+c^2+d^2+e^2+f^2+g^2+h^2\}\\ & = S^7\end{aligned}\] you don't know this one,
- neither to do I;
- Physics pretends to know it.
- It is not even a group (nonassociative), it is what is known as a Moufang Loop.
- If you learn this one you might become a powerful wizzard.
Geometric Algebra
By James Wilson
Geometric Algebra
- 588