Homophily-Based Social Group Formation
in a Spin Glass Self-Assembly Framework
in collaboration with
Simon Lindner
Tuan Pham
Rudolf Hanel
Stefan Thurner
Journal Ref.: Phys. Rev. Lett. 130 (2023) 057401
Slides available at: https://slides.com/jankorbel
More about me: https://jankorbel.eu
Graphical abstract
soft-matter self-assembly
condensed matter spin glasses
social group formation
Homophily-Based Social Group Formation
in a Spin Glass Self-Assembly Framework
Paper flow
1.
2.
3.
1. Thermodynamics of
structure-forming systems
Entropy for systems with structures
\(W(n_i^{(j)}) = \frac{n!}{\prod_{ij} n_i^{(j)}! \textcolor{red}{(j!)^{n_i^{(j)}}}}\)
$$\mathcal{S} = - \sum_{ij} \wp_i^{(j)} (\log \wp_i^{(j)} {\color{red}- 1}) {\color{red}- \sum_{ij} \wp_i^{(j)}\log \frac{j!}{n^{j-1}}}$$
\( S = k \cdot \log W\)
\( \wp_i^{(j)} = n_i^{(j)}/n\)
When we want to calculate the MaxEnt distribution, we maximize the entropy w.r.t. to
- normalization \(\sum_{ij} j \wp_{i}^{(j)}=1\)
- average energy \(\sum_{ij} \wp_{i}^{(j)} \epsilon_{i}^{(j)} = E\)
Equilibrium distribution:
$$\hat{\wp}_i^{(j)} = \frac{n^{j-1}}{j!} \exp(-\alpha j - \beta \epsilon_i^{(j)})$$
Normalization:
\(\sum_{ij} j \wp_i^{(j)} = \sum_{ij} \frac{n^{j-1}}{(j-1)!} e^{-{\color{red} \alpha} j - \beta \epsilon_i^{(j)}} = 1\) for \({\color{red} \alpha}\)
Free energy:
\( F = U - \beta^{-1} S = - \frac{\alpha}{\beta} {\color{red}- \frac{\mathcal{M}}{\beta}}\)
where \(\mathcal{M} = \sum_{ij} \wp_{i}^{(j)}\) is the number of molecules
MaxEnt distribution and free energy
Applications to self-assembly
2. Spin-glass based opinion dynamics
- Many opinion dynamics systems follow two basic concepts:
1. Homophily - people tend to be friends with peers with similar opinions ("birds of a feather flock together")
2.Social balance - people tend to follow Heider balance relation
("a friend of my friend is my friend, enemy of my friend is my enemy")
2. Spin-glass based opinion dynamics
Group size distribution
Paper result: Social balance can emerge from homophily
3. Social group formation in the spin-glass self-assembly framework
Hamiltonian of a group \(\mathcal{G}\)
\(H(\mathbf{s}_{i_1},\dots,\mathbf{s}_{i_k}) = \textcolor{red}{\underbrace{- \phi \, \frac{J}{2} \sum_{ij \in \mathcal{G}} A_{ij} \mathbf{s}_i \cdot \mathbf{s}_j}_{intra-group \ social \ stress}} \textcolor{blue}{ + \underbrace{(1-\phi) \frac{J}{2} \sum_{i \in \mathcal{G}, j \notin \mathcal{G}} A_{ij} \mathbf{s}_{i} \cdot \mathbf{s}_j}_{inter-group \ social \ stress}} \\ \qquad \qquad \qquad \qquad - \underbrace{h \sum_{i \in \mathcal{G}} \mathbf{s}_i \cdot \mathbf{w}}_{external \ field}\)
Group formation based on opinion= self-assembly of spin glass
Group 1
Group 2
friends
enemies
Approximations used in the model
1. Configuration model
- We do not know the full network, just a degree distribution. \(\Rightarrow\) The probability of observing a link between \(i\) and \(j\) is proportional to the degree of both nodes
2. Mean-field approximation
- We use the mean-field approximation of the Hamiltonian.
These two approximations lead to the set of self-consistency equations:
$$m^{(k)} = k \sum_{q^{(k)} q^{(k,l)}} P(q^{(k)}) P(q^{(k,l)}) \tanh(\beta H^{(k)}(m^{(l)},q^{(k)},q^{(k,l)})) $$
where \(q^{(k)}\) is the intra-group degree, \(q^{(k,l)}\) is the inter-group degree and \(P\) is the degree distribution
Results for zero inter-group degree
Theory
MC simulation
Application online multiplayer game PARDUS
+
=
Science is interdisciplinary.
Thank you
Homophily-Based Social Group Formation in a Spin Glass Self-Assembly Framework - CSH workshop
By Jan Korbel
Homophily-Based Social Group Formation in a Spin Glass Self-Assembly Framework - CSH workshop
- 31