Tensor networks

for classical (FRUSTRATED) spin systems

Jeanne Colbois | Institut Néel

GDR Physique quantique mésoscopique - Aussois 2025 - 03/12/2025

Tensor networks

for classical (FRUSTRATED) spin systems

Jeanne Colbois | Institut Néel

everything commutes

Classical Models on a lattice?

GDR Physique quantique mésoscopique - Aussois 2025 - 03/12/2025

AcknowledgEments

2

Andrew Smerald

KIT | Germany

Frédéric Mila

EPFL | Switzerland

Frank Verstraete

Ghent University | Belgium

Laurens Vanderstraeten

Ghent University | Belgium

Samuel Nyckees

EPFL | Switzerland

Afonso Rufino

EPFL | Switzerland

Bram Vanhecke

University of Vienna | Austria

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

SCOPE

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

3

SCOPE

1. Motivation: classical models

 

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

3

SCOPE

1. Motivation: classical models

 

2. Statistical mechanics and tensor networks

 

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

3

SCOPE

1. Motivation: classical models

 

2. Statistical mechanics and tensor networks

 

3. Frustrated magnetism and tensor networks

 

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

3

SCOPE

1. Motivation: classical models

 

2. Statistical mechanics and tensor networks

 

3. Frustrated magnetism and tensor networks

 

4. Broader perspective: open challenges

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

3

3

Motivation: Classical models

Why study them?

Why I study them: frustration, exponential ground state degeneracy

(Why) do we need new techniques?

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

4

Why study classical models

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Position of a molecule

I. A. Chioar, et al PRB 93, (2016)

Afonso-Moro et al. (2023)

Degree of freedom is captured by a classical variable

Nanomagnet magnetization

4

Why study classical models

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Simplified models of quantum (many-body) systems

Position of a molecule

I. A. Chioar, et al PRB 93, (2016)

Afonso-Moro et al. (2023)

Degree of freedom is captured by a classical variable

Nanomagnet magnetization

4

Why study classical models

Why study classical models

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Degree of freedom is captured by a classical variable

Simplified models of quantum (many-body) systems

Quantum models mapped to classical models -- see next talk!

Position of a molecule

I. A. Chioar, et al PRB 93, (2016)

Nanomagnet magnetization

Afonso-Moro et al. (2023)

4

Characterizing classical systems

5

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

\mathcal{Z}= \sum_{\mathrm{conf.}} e^{-\frac{1}{k_BT} H(\mathrm{conf})}

partition function

Characterizing classical spin systems 

6

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

Spin up

Spin down

6

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

T

\(C_v\)

Spin up

Spin down

Thermodynamic properties

S := \lim_{N \rightarrow \infty} \frac{\ln(W_{\text{G.S.}})}{N} \\ \rightarrow 0

Characterizing classical spin systems 

6

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

Thermodynamic properties

Magnetic order

\(q_x\)

\(q_x\)

\(\xi = \infty\)

\(\xi = 0\)

\(q_y\)

\(q_y\)

Ideal paramagnet

T

\(C_v\)

S := \lim_{N \rightarrow \infty} \frac{\ln(W_{\text{G.S.}})}{N} \\ \rightarrow 0

Spin up

Spin down

Correlation functions

Characterizing classical spin systems 

classical models of Frustrated magnets

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

Spin up

Spin down

7

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1
W_{G.S.} \gtrsim 2^{N/3}

Spin up

Spin down

7

\(2100\) sites  :  \(2^{700} \)  ground states!

classical models of Frustrated magnets

(vs \(2^{265} \) atoms in the universe)

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1
W_{G.S.} \gtrsim 2^{N/3}
S := \lim_{N \rightarrow \infty} \frac{\ln(W_{\text{G.S.}})}{N} \\ \rightarrow 0.501833...

Spin up

Spin down

Kano, Naya (1958)

7

Thermodynamic properties

\(2100\) sites  :  \(2^{700} \)  ground states!

classical models of Frustrated magnets

(vs \(2^{265} \) atoms in the universe)

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

\(2100\) sites  :  \(2^{700} \)  ground states!

W_{G.S.} \gtrsim 2^{N/3}
\xi = 1.2506...

A. Sütö, Z. Phys. B 44, (1981)

W. Apel, H.-U. Everts, J. Stat. Mech, (2011)

\(q_x\)

\(q_y\)

S := \lim_{N \rightarrow \infty} \frac{\ln(W_{\text{G.S.}})}{N} \\ \rightarrow 0.501833...

Spin up

Spin down

Kano, Naya (1958)

7

Correlation functions

Thermodynamic properties

classical models of Frustrated magnets

(vs \(2^{265} \) atoms in the universe)

8

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Exotic phases and phase transitions

(From local constraints)

8

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Exotic phases and phase transitions

(From local constraints)

"Mixed-order"

Kasteleyn phase transition

\(T\)

\(C_V\)

Kasteleyn (1960's), Nagle et al(1989), Jaubert et al (2008)

More complex Ising models? 

9

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

More complex Ising models? 

H =
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

9

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

More complex Ising models? 

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

9

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

More complex Ising models? 

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

9

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

Solving Classical models can be hard

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

10

Solving Classical models can be hard

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

10

High-temperature series expansion

Solving Classical models can be hard

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

10

High-temperature series expansion

Monte Carlo methods

Solving Classical models can be hard

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

10

High-temperature series expansion

Renormalization group

Monte Carlo methods

Solving Classical models can be hard

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

10

High-temperature series expansion

Renormalization group

Transfer matrix

Monte Carlo methods

Solving Classical models can be hard

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

10

High-temperature series expansion

Renormalization group

Transfer matrix

Monte Carlo methods

Tensor networks And statistical mechanics

Writing partition functions as tensor networks?

Observables?

One-Slide: tensor networks

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

11

One-Slide: tensor networks

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Scalar

Vector

Matrix

Rank-3 tensor

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

Scalar product

Matrix-vector product

CONTRACTION

Only 2 legs can meet!

11

One-Slide: tensor networks

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Scalar

Vector

Matrix

Rank-3 tensor

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

11

Scalar product

Matrix-vector product

CONTRACTION

Only 2 legs can meet!

One-Slide: tensor networks

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Scalar

Vector

Matrix

Rank-3 tensor

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

11

Scalar product

Matrix-vector product

CONTRACTION

Only 2 legs can meet!

One-Slide: tensor networks

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Scalar

Vector

Matrix

Rank-3 tensor

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

11

Scalar product

Matrix-vector product

CONTRACTION

Only 2 legs can meet!

One-Slide: tensor networks

11

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Scalar

Vector

Matrix

Rank-3 tensor

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Scalar product

Matrix-vector product

CONTRACTION

Only 2 legs can meet!

One-Slide: tensor networks

11

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Scalar

Vector

Matrix

Rank-3 tensor

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Text

Scalar product

Matrix-vector product

CONTRACTION

Only 2 legs can meet!

Conceptual shift

12

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Yuriel's talk

(mostly 1D quantum)

This talk

(mostly 2D classical)

12

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Given:

a complicated function

Conceptual shift

Yuriel's talk

(mostly 1D quantum)

This talk

(mostly 2D classical)

12

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Given:

a complicated function

Question:

approximate it as a tensor network?

Conceptual shift

Yuriel's talk

(mostly 1D quantum)

This talk

(mostly 2D classical)

12

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Given:

a complicated function

OR

Given:

a Hamiltonian

Question:

approximate it as a tensor network?

Conceptual shift

Yuriel's talk

(mostly 1D quantum)

This talk

(mostly 2D classical)

12

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Yuriel's talk

(mostly 1D quantum)

This talk

(mostly 2D classical)

Given:

a complicated function

OR

Given:

a Hamiltonian

Question:

approximate its ground-state wavefunction as a tensor network?

Question:

approximate it as a tensor network?

Conceptual shift

12

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Given:

a complicated function

OR

Given:

a Hamiltonian

Question:

approximate its ground-state wavefunction as a tensor network?

Given:

a partition function

exact tensor network

Question:

approximate it as a tensor network?

Conceptual shift

Yuriel's talk

(mostly 1D quantum)

This talk

(mostly 2D classical)

12

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Given:

a complicated function

OR

Given:

a Hamiltonian

Question:

Can you evaluate it?

Given:

a partition function

exact tensor network

Question:

approximate its ground-state wavefunction as a tensor network?

Question:

approximate it as a tensor network?

Conceptual shift

Yuriel's talk

(mostly 1D quantum)

This talk

(mostly 2D classical)

The 1D ising model AS a tensor network

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

13

\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}

The 1D ising model AS a tensor network

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

13

Ising (1924)

\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}
T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}

The 1D ising model AS a tensor network

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

13

Ising (1924)

The partition function is just the exponentiation of a 2x2 matrix!

\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}
T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}
\mathcal{Z}_L = (T^L)

The 1D ising model AS a tensor network

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

13

Ising (1924)

T^L = \left(P^{-1} \Lambda P\right)^L = P^{-1} \Lambda^L P

The partition function is just the exponentiation of a 2x2 matrix!

\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}
T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}

1. Diagonalize

\mathcal{Z}_L = (T^L)

The 1D ising model AS a tensor network

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

13

Ising (1924)

T^L = \left(P^{-1} \Lambda P\right)^L = P^{-1} \Lambda^L P

The partition function is just the exponentiation of a 2x2 matrix!

\Lambda^{L} = \lambda_{+}^{L} \begin{pmatrix} 1& 0 \\ 0 & \left(\frac{\lambda_{-}}{\lambda_{+}}\right)^L \end{pmatrix} \xrightarrow[L \to \infty]{} \lambda_{+}^{L} \begin{pmatrix} 1& 0 \\ 0 & 0 \end{pmatrix}
\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}
T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}
\mathcal{Z}_L = (T^L)

1. Diagonalize

2. Compute

The 1D ising model AS a tensor network

Leading eigenvalue!

13

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Ising (1924)

2 examples of 2d tensor networks

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

14

2 examples of 2d tensor networks

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

14

2D Ising model

T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}

2 examples of 2d tensor networks

\mathcal{Z} =

2D Ising model

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

14

T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}

2 examples of 2d tensor networks

\mathcal{Z} =

2D Ising model

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

14

Generalized kronecker \(\delta\) tensor

T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}

Generalized kronecker \(\delta\) tensor

2 examples of 2d tensor networks

\mathcal{Z} =

2D Ising model

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

14

Dimer counting

 # of ways to put dimers on the edges of a square lattice?

Baxter 1968 : First "tensor network" equations to solve this problem. 

T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}

Generalized kronecker \(\delta\) tensor

2 examples of 2d tensor networks

\mathcal{Z} =

2D Ising model

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

14

Dimer counting

 # of ways to put dimers on the edges of a square lattice?

Baxter 1968 : First "tensor network" equations to solve this problem. 

 \(\Omega \approx 1,3385^ N\)

T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}

Generalized kronecker \(\delta\) tensor

2 examples of 2d tensor networks

\mathcal{Z} =

2D Ising model

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

14

Dimer counting

 # of ways to put dimers on the edges of a square lattice?

\(2 \times 2 \times 2 \times 2\)

Baxter 1968 : First "tensor network" equations to solve this problem. 

 \(\Omega \approx 1,3385^ N\)

T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}

Generalized kronecker \(\delta\) tensor

2 examples of 2d tensor networks

\mathcal{Z} =

2D Ising model

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

14

Dimer counting

 \(\Omega \approx 1,3385^ N\)

 # of ways to put dimers on the edges of a square lattice?

\(2 \times 2 \times 2 \times 2\)

=

= ... = 1

=

= ... = 0

Baxter 1968 : First "tensor network" equations to solve this problem. 

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

\mathcal{Z} =

Given by the Hamiltonian

Evaluate the partition function? Three main schemes

15

1. Boundary-MPS methods

Baxter, 1968;  Orús, Vidal, 2008; Zauner-Stauber et. al. 2018; Fishman et. al 2018  

2. Corner transfer matrix renormalization group

3. Tensor network renormalization

2d classical is like 1d quantum

Approximate the infinite environment

Real-space renormalization

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

\mathcal{Z} =

Given by the Hamiltonian

R. J. Baxter, J. Math. Phys. 9, 1968;

T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996

Levin & Nave, 2007;  Gu & Wen (2009); Evenbly & Vidal (2014); Ebel, Kennedy,  Rychkov (2025)....

Evaluate the partition function? Three main schemes

15

1. Boundary-MPS methods

Baxter, 1968;  Orús, Vidal, 2008; Zauner-Stauber et. al. 2018; Fishman et. al 2018  

2. Corner transfer matrix renormalization group

3. Tensor network renormalization

2d classical is like 1d quantum

Approximate the infinite environment

Real-space renormalization

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

\mathcal{Z} =

Given by the Hamiltonian

R. J. Baxter, J. Math. Phys. 9, 1968;

T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996

Levin & Nave, 2007;  Gu & Wen (2009); Evenbly & Vidal (2014); Ebel, Kennedy,  Rychkov (2025)....

Evaluate the partition function? Three main schemes

15

BoundarY matrix product states methods

\mathcal{Z} =

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

16

Baxter, 1968;  Orús, Vidal, 2008; Zauner-Stauber et. al. 2018;  Fishman et. al 2018  

BoundarY matrix product states methods

\mathcal{Z} =

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

16

Baxter, 1968;  Orús, Vidal, 2008; Zauner-Stauber et. al. 2018;  Fishman et. al 2018  

BoundarY matrix product states methods

Baxter, 1968;  Orús, Vidal, 2008; Zauner-Stauber et. al. 2018;  Fishman et. al 2018  

\mathcal{Z} =

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

16

\chi

BoundarY matrix product states methods

Baxter, 1968;  Orús, Vidal, 2008; Zauner-Stauber et. al. 2018;  Fishman et. al 2018  

\mathcal{Z} =

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

16

\chi

Free energy per site

2^L

Corner transfer matrix renormalization group

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

R. J. Baxter, J. Math. Phys. 9, 1968

T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996

Fishman et al. PRB 98, 2018

Corboz et al (2014)

\mathcal{Z} =

17

Corner transfer matrix renormalization group

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

\mathcal{Z} =

Approximate the infinite-size  environment with a few tensors of finite bond dimension

17

R. J. Baxter, J. Math. Phys. 9, 1968

T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996

Fishman et al. PRB 98, 2018

Corboz et al (2014)

Corner transfer matrix renormalization group

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

\mathcal{Z} =

Approximate the infinite-size  environment with a few tensors of finite bond dimension

17

\chi

R. J. Baxter, J. Math. Phys. 9, 1968

T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996

Fishman et al. PRB 98, 2018

Corboz et al (2014)

Corner transfer matrix renormalization group

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

\mathcal{Z} =

Approximate the infinite-size  environment with a few tensors of finite bond dimension

17

\chi

R. J. Baxter, J. Math. Phys. 9, 1968

T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996

Fishman et al. PRB 98, 2018

Corboz et al (2014)

Corner transfer matrix renormalization group

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

\mathcal{Z} =

Approximate the infinite-size  environment with a few tensors of finite bond dimension

Building block for quantum problems : algorithms are already optimized

17

\chi

R. J. Baxter, J. Math. Phys. 9, 1968

T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996

Fishman et al. PRB 98, 2018

Corboz et al (2014)

18

Observables 

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

18

Observables 

\(\langle O \rangle= \frac{1}{\mathcal{Z}} \sum_{\vec{\sigma}} O(\mathrm{\vec{\sigma}}) e^{-\beta H}\)  = 

1. Local observable:

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

18

Observables 

\(\langle O \rangle= \frac{1}{\mathcal{Z}} \sum_{\vec{\sigma}} O(\mathrm{\vec{\sigma}}) e^{-\beta H}\)  = 

1. Local observable:

2. Correlation function

\(\langle O_i O_j \rangle =\) 

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

18

Observables 

\(\langle O \rangle= \frac{1}{\mathcal{Z}} \sum_{\vec{\sigma}} O(\mathrm{\vec{\sigma}}) e^{-\beta H}\)  = 

1. Local observable:

2. Correlation function

\xi = - \ln \frac{\epsilon_2}{\epsilon_1}

Correlation length:

\(\langle O_i O_j \rangle =\) 

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

19

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Example: 2D Ising model

Orús, Vidal, PRB 78, 2008  

19

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Critical point

\(\rightarrow\) finite-bond dimension scaling

\(T \in [2.2666, 2.2698]\)

Example: 2D Ising model

Orús, Vidal, PRB 78, 2008  

Vanhecke et al. PRL (2019)

So far

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Partition functions of short-range models as exact, infinite-size tensor networks

Capture correlation functions, critical exponents, etc.

T
\Delta
\nu_x = 2/3\quad \nu_y = 1 \\ z = 3/2 \quad \bar{\beta} = 2/3

Nyckees, JC, Mila, NPB (2021)

2D chiral Potts model

Frustrated magnets and tensor networks

Ground-state local rules

Example of results

A simple case

Vanhecke, JC et al (2021)

20

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

A simple case

Vanhecke, JC et al (2021)

20

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

A simple case

Vanhecke, JC et al (2021)

20

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

A simple case

Vanhecke, JC et al (2021)

Numerical problem

Cancellation of small and large factors

C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)

Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)

 

 

J. G. Liu, L. Wang, P. Zhan, PRL 126, (2021)

20

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

A simple case

Vanhecke, JC et al (2021)

Numerical problem

Cancellation of small and large factors

Bad gauge

The transfer matrix is badly conditioned

(e.g. not hermitian, ...)

C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)

Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)

 

 

J. G. Liu, L. Wang, P. Zhan, PRL 126, (2021)

W. Tang et al, (2024, 2025)

20

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

A simple case

Vanhecke, JC et al (2021)

Numerical problem

Ground-state rule

Cancellation of small and large factors

Failure to minimize simultaneously all local Hamiltonians.

Bad gauge

The transfer matrix is badly conditioned

(e.g. not hermitian, ...)

C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)

Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)

 

 

J. G. Liu, L. Wang, P. Zhan, PRL 126, (2021)

W. Tang et al, (2024, 2025)

B. Vanhecke, JC, et al. PRR 3, (2021)

F.F. Song, T.-Y. Lin, G. M. Zhang, PRB (2023)

20

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Ground state: 

Simple case : triangular lattice Ising antiferromagnet

Kasteleyn, (1961), Fisher (1966)

21

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Ground state: 

Simple case : triangular lattice Ising antiferromagnet

Dimer coverings!

Kasteleyn, (1961), Fisher (1966)

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

21

Ground state: 

Simple case : triangular lattice Ising antiferromagnet

Dimer coverings!

\(2 \times 2 \times 2\)

\(=0\)

Kasteleyn, (1961), Fisher (1966)

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

21

Ground state: 

Simple case : triangular lattice Ising antiferromagnet

Dimer coverings!

\(2 \times 2 \times 2\)

\(=0\)

Kasteleyn, (1961), Fisher (1966)

Vanhecke, JC et al (2021)

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

21

Ground state: 

Simple case : triangular lattice Ising antiferromagnet

Kasteleyn, (1961), Fisher (1966)

Dimer coverings!

\(2 \times 2 \times 2\)

\(=0\)

Vanhecke, JC et al (2021)

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

21

Finite temperature

22

Vanhecke, JC et al (2021)

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Finite temperature

22

Vanhecke, JC et al (2021)

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

\(2 \times 2 \times 2\)

\(=e^{-\beta J}\)

Same structure and size

Different entries

Finite temperature

Vanhecke, JC et al (2021)

22

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

\(2 \times 2 \times 2\)

Finite temperature

Vanhecke, JC et al (2021)

22

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

\(2 \times 2 \times 2\)

\(=e^{-\beta J}\)

Same structure and size

Different entries

More complex Ising models? 

23

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

More complex Ising models? 

23

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

We can still write a well-behaved local tensor

Systematic linear program

Finite-range models

Exact ground state energy

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

Vanhecke, JC et al (2021)

JC et al (2022)

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

Nagy et al; PRE 109 (2024)

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

24

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

1. ground state properties: three unexpected spin liquids

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

24

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

1. ground state properties: three unexpected spin liquids

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

24

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

JC et. al., PRB 106 (2022)

1. ground state properties: three unexpected spin liquids

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

JC et. al., PRB 106 (2022)

1. ground state properties: three unexpected spin liquids

Exact ground-state energy

\(10^{-5}\) precision on the entropy

24

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

JC et. al., PRB 106 (2022)

1. ground state properties: three unexpected spin liquids

Exact ground-state energy

\(10^{-5}\) precision on the entropy

24

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

25

2. A cascade of topological phase transitions

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

25

2. A cascade of topological phase transitions

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

What causes this cascade of phase transitions?

25

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

2. A cascade of "topological" phase transitions

25

2. A cascade of "topological" phase transitions

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

25

2. A cascade of "topological" phase transitions

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Sampling in real space

25

2. A cascade of "topological" phase transitions

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Sampling in real space

Correlation functions

25

2. A cascade of "topological" phase transitions

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Sampling in real space

Correlation functions

An infinite series of phases not fixed by commensurability

Plateaus in the ratios of densities of 2 types of system-spanning strings

Broader perspective

2D systems & 3D systems

Promising directions

Status and Open challenges in 2D and 3D

26

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

2D

Status and Open challenges in 2D and 3D

26

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Ising

XY

Heisenberg

NN

NN frustrated

Farther Neighbours

Farther-N. frustrated

Vanhecke et al.

Colbois et al.

Vanderstraeten et al.

Song et al.

Ueda et al.

Schmoll et al.

Ueda et al.

2D

Status and Open challenges in 2D and 3D

26

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Ising

XY

Heisenberg

NN

NN frustrated

Farther Neighbours

Farther-N. frustrated

Vanhecke et al.

Colbois et al.

Vanderstraeten et al.

Song et al.

Ueda et al.

Schmoll et al.

Ueda et al.

2D

Status and Open challenges in 2D and 3D

26

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Ising

XY

Heisenberg

NN

NN frustrated

Farther Neighbours

Farther-N. frustrated

?

?

Vanhecke et al.

Colbois et al.

Vanderstraeten et al.

Song et al.

Ueda et al.

Schmoll et al.

Ueda et al.

2D

Status and Open challenges in 2D and 3D

26

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Ising

XY

Heisenberg

NN

NN frustrated

Farther Neighbours

Farther-N. frustrated

?

?

Vanhecke et al.

Colbois et al.

Vanderstraeten et al.

Song et al.

Ueda et al.

Schmoll et al.

Ueda et al.

2D

1. Large system limits for disordered systems

2. Long-range interactions

3. Dealing with non-local constraints

Wishlist

Liu et al. (2021)

1D: Nunez-Fernandez et al.  (2025)

Status and Open challenges in 2D and 3D

26

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

SOTA : 3D Ising, 3D Ice : bond dimension 2 

Ising

XY

Heisenberg

NN

NN frustrated

Farther Neighbours

1. Large system limits for disordered systems

2. Long-range interactions

Farther-N. frustrated

3. Dealing with non-local constraints

?

?

Vanhecke et al.

Colbois et al.

Vanderstraeten et al.

Song et al.

Ueda et al.

Schmoll et al.

Wishlist

Liu et al. (2021)

1D: Nunez-Fernandez et al.  (2025)

Ueda et al.

2D

3D

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

directions under exploration in the field

27

Conformal field theory

Renormalization group

Contracting 2D and 3D tensor networks

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Properties of the fixed-point tensor / RG

Grasping 3D CFTs using original regularization of the sphere

directions under exploration in the field

27

Läuchli et al (2025), Rey et al (2025)

Ueda et al. (2023), Kennedy & Rychkov (2024), Ebel et al (2024,2025)

Conformal field theory

Renormalization group

Contracting 2D and 3D tensor networks

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Properties of the fixed-point tensor / RG

Grasping 3D CFTs using original regularization of the sphere

Taking advantage of lattice symmetries

directions under exploration in the field

27

Läuchli et al (2025), Rey et al (2025)

Lukin et al (2023), Nyckees et al (JC) (2023),

Yang & Corboz (2025), Naumann et al (2025)

Ueda et al. (2023), Kennedy & Rychkov (2024), Ebel et al (2024,2025)

Conformal field theory

Renormalization group

Contracting 2D and 3D tensor networks

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Properties of the fixed-point tensor / RG

Contraction in 3D:

     1. Advanced CTMRG and tensor-RG schemes

    2. taking advantage of the normality of the transfer operator

Grasping 3D CFTs using original regularization of the sphere

Taking advantage of lattice symmetries

directions under exploration in the field

27

Läuchli et al (2025), Rey et al (2025)

Lukin et al (2023), Nyckees et al (JC) (2023),

Yang & Corboz (2025), Naumann et al (2025)

Ueda et al. (2023), Kennedy & Rychkov (2024), Ebel et al (2024,2025)

Nishino et al (2000), [many more],

Vanderstraeten et al (2018),

Ebel (2025),  Xu,Lin,Zhang(2025), Tang et al (2025)

Conformal field theory

Renormalization group

Contracting 2D and 3D tensor networks

directions under exploration in the field

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Properties of the fixed-point tensor / RG

Combining with classical Monte Carlo

Contraction in 3D:

     1. Advanced CTMRG and tensor-RG schemes

    2. taking advantage of the normality of the transfer operator

Frias-Perez et al (2023)

Nishino et al (2000), [many more],

Vanderstraeten et al (2018),

Ebel (2025),  Xu,Lin,Zhang(2025), Tang et al (2025)

Grasping 3D CFTs using original regularization of the sphere

Läuchli et al (2025), Rey et al (2025)

Taking advantage of lattice symmetries

Lukin et al (2023), Nyckees et al (JC) (2023),

Yang & Corboz (2025), Naumann et al (2025)

27

Ueda et al. (2023), Kennedy & Rychkov (2024), Ebel et al (2024,2025)

Conformal field theory

Renormalization group

Contracting 2D and 3D tensor networks

Take-home message

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Take-home message

Tensor networks:

a way to capture complex behavior in statistical mechanics

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Take-home message

Tensor networks:

a way to capture complex behavior in statistical mechanics

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Constrained models shine light

on tensor network methods

Take-home message

Tensor networks:

a way to capture complex behavior in statistical mechanics

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Thank you for your attention!

P.S. I also work on quantum many-body disordered systems -

come talk if you are curious!

Constrained models shine light

on tensor network methods

Bonus slides

Kagome

Kagome

Ising models as weigthed counting problems

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

Nagy et al; PRE 109 (2024)

Essential idea : Anderson bounds

H = \sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

Ising models as weigthed counting problems

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

Nagy et al; PRE 109 (2024)

Essential idea : Anderson bounds

H = \sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

LINEAR PROGRAM:

Ising models as weigthed counting problems

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

Nagy et al; PRE 109 (2024)

Essential idea : Anderson bounds

H = \sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

LINEAR PROGRAM:

1. Split with clusters that overlap

H = \sum_{c} H_c^{\alpha}(\vec{\sigma}|_c)

Ising models as weigthed counting problems

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

Nagy et al; PRE 109 (2024)

Essential idea : Anderson bounds

H = \sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

LINEAR PROGRAM:

1. Split with clusters that overlap

2. Minimize : G.S. lower-bound 

\min_{\vec{\sigma}|_c} H_c^{\alpha}(\vec{\sigma}|_c)
H = \sum_{c} H_c^{\alpha}(\vec{\sigma}|_c)

Ising models as weigthed counting problems

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

Nagy et al; PRE 109 (2024)

Essential idea : Anderson bounds

H = \sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

LINEAR PROGRAM:

\max_{\alpha}\,\,\min_{\vec{\sigma}|_c} H_c^{\alpha}(\vec{\sigma}|_c)

3.  Maximize w.r.t the weights:

1. Split with clusters that overlap

2. Minimize : G.S. lower-bound 

\min_{\vec{\sigma}|_c} H_c^{\alpha}(\vec{\sigma}|_c)
H = \sum_{c} H_c^{\alpha}(\vec{\sigma}|_c)

Ising models as weigthed counting problems

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

Nagy et al; PRE 109 (2024)

Essential idea : Anderson bounds

H = \sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

LINEAR PROGRAM:

\max_{\alpha}\,\,\min_{\vec{\sigma}|_c} H_c^{\alpha}(\vec{\sigma}|_c)

3.  Maximize w.r.t the weights:

1. Split with clusters that overlap

2. Minimize : G.S. lower-bound 

\min_{\vec{\sigma}|_c} H_c^{\alpha}(\vec{\sigma}|_c)
H = \sum_{c} H_c^{\alpha}(\vec{\sigma}|_c)

Obtain the ground states by tiling

Residual entropy and Normalized partition function

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

Nagy et al; PRE 109 (2024)

\lim_{\beta \rightarrow \infty} {\color{orange}\tilde{\mathcal{Z}}_N} = {\color{orange}W_N}
S = \lim_{N \rightarrow \infty} \frac{1}{N} \ln\left(W_N\right)
\cong {\color{orange}\lambda_+}^N
\mathcal{Z}_N = \sum_{\{\sigma\}} e^{-\beta \mathcal{H}(\{\sigma\})} = e^{-\beta E_{\rm{GS}}} {\color{orange}\sum_{\{\sigma\}} e^{-\beta \left(\mathcal{H}(\{\sigma\})- E_{\rm{GS}}\right)}}\\ = e^{-\beta E_{\rm{GS}}} {\color{orange}\tilde{\mathcal{Z}}_N}

Wikipedia, CC BY license

Image compression

Julia Yeomans

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

\(\chi = 4\)

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

\(\chi = 4\)

\(\chi = 20\)

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

\(\chi = 4\)

\(\chi = 20\)

\(\chi = 100\)

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

\(\chi = 4\)

\(\chi = 20\)

\(\chi = 100\)

Image compression

Image compression

Always ask : why do I expect the bond dimension to be limited?  

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

\(\chi = 4\)

\(\chi = 20\)

\(\chi = 100\)

Tensor networks notation

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

8

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Type

Notation

Visualization

Tensor networks notation

Scalar

Vector

Matrix

Rank-3 tensor

"Legs"

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

8

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Type

Notation

Visualization

Tensor networks notation

Scalar

Vector

Matrix

Rank-3 tensor

"Legs"

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

8

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Type

Notation

Visualization

Tensor networks notation

Scalar

Vector

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

"Legs"

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

8

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Type

Notation

Visualization

Tensor networks notation

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

"Legs"

Size of the index = bond dimension = \(\chi\) or \(D\)

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

8

Tensor networks notation

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

Connecting legs = make the product

"CONTRACTION"

"Legs"

Size of the index = bond dimension = \(\chi\) or \(D\)

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

8

Tensor networks notation

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

Scalar product

Connecting legs = make the product

"CONTRACTION"

"Legs"

Size of the index = bond dimension = \(\chi\) or \(D\)

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

8

Tensor networks notation

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

Scalar product

Matrix-vector product

Connecting legs = make the product

"CONTRACTION"

"Legs"

Size of the index = bond dimension = \(\chi\) or \(D\)

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

8

Tensor networks notation

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

Scalar product

Matrix-vector product

Connecting legs = make the product

"CONTRACTION"

"Legs"

Size of the index = bond dimension = \(\chi\) or \(D\)

You can group indices:

\(\chi \times\chi \times \chi \times \chi\)

tensor

=

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

8

Tensor networks notation

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

Scalar product

Matrix-vector product

Connecting legs = make the product

"CONTRACTION"

"Legs"

Size of the index = bond dimension = \(\chi\) or \(D\)

You can group indices:

\(\chi \times\chi \times \chi \times \chi\)

tensor

\(\chi^2 \times\chi^2\)

matrix

=

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

8

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

why (When) do We expect the bond dimension to be limited?  

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)

We want to "factorize" or compress it: 

9

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)

ENTANGLEMENT (area law)

We want to "factorize" or compress it: 

9

why (When) do We expect the bond dimension to be limited?  

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)

Many-body Hilbert space

We want to "factorize" or compress it: 

9

why (When) do We expect the bond dimension to be limited?  

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)

Many-body Hilbert space

\propto L

We want to "factorize" or compress it: 

9

why (When) do We expect the bond dimension to be limited?  

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

Many-body Hilbert space

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)
\propto L

We want to "factorize" or compress it: 

why (When) do We expect the bond dimension to be limited?  

9

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

Many-body Hilbert space

Ground states of gapped, local Hamiltonians

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)
\propto L

We want to "factorize" or compress it: 

9

why (When) do We expect the bond dimension to be limited?  

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

Many-body Hilbert space

Ground states of gapped, local Hamiltonians

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)
\propto \mathrm{const}
\propto L

We want to "factorize" or compress it: 

9

why (When) do We expect the bond dimension to be limited?  

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

Many-body Hilbert space

Ground states of gapped, local Hamiltonians

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)
\propto \mathrm{const}
\propto L

9

why (When) do We expect the bond dimension to be limited?  

We want to "factorize" or compress it: 

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Examples

2D square lattice Ising model

Vanhecke et al. PRL (2019)

19

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Critical point

\(\rightarrow\) finite-bond dimension scaling

2D chiral Potts model (1d Rydberg arrays)

\(T \in [2.2666, 2.2698]\)

T

Anisotropy

3-states

Highly anisotropic, not conformal critical point

Nyckees, JC, Mila, NPB (2021) and refs. therein

Examples

2D square lattice Ising model

Vanhecke et al. PRL (2019)

19

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Critical point

\(\rightarrow\) finite-bond dimension scaling

2D chiral Potts model (1d Rydberg arrays)

\(T \in [2.2666, 2.2698]\)

T

Anisotropy

3-states

Highly anisotropic, not conformal critical point

Nyckees, JC, Mila, NPB (2021) and refs. therein

Examples

2D square lattice Ising model

Vanhecke et al. PRL (2019)

19

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Critical point

\(\rightarrow\) finite-bond dimension scaling

2D chiral Potts model (1d Rydberg arrays)

\(T \in [2.2666, 2.2698]\)

T

Anisotropy

3-states

Highly anisotropic, not conformal critical point

Nyckees, JC, Mila, NPB (2021) and refs. therein

Examples

2D square lattice Ising model

Vanhecke et al. PRL (2019)

19

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Critical point

\(\rightarrow\) finite-bond dimension scaling

2D chiral Potts model (1d Rydberg arrays)

\(T \in [2.2666, 2.2698]\)

T

Anisotropy

?

3-states

Highly anisotropic, not conformal critical point

Nyckees, JC, Mila, NPB (2021) and refs. therein

Examples

2D square lattice Ising model

Vanhecke et al. PRL (2019)

19

COLBOIS|TNS FOR CLASSICAL SPIN SYSTEMS |  11.2025

Critical point

\(\rightarrow\) finite-bond dimension scaling

2D chiral Potts model (1d Rydberg arrays)

Anisotropy

\(T \in [2.2666, 2.2698]\)

Nyckees, JC, Mila, NPB (2021) and refs. therein

Tensor networks for classical (frustrated) spin systems

By Jeanne Colbois

Tensor networks for classical (frustrated) spin systems

Invited talk at GDR quantum meso

  • 7