Jeanne Colbois PRO
Physicist @ CNRS. Here you find slides for *some* of my presentations, as well as visual abstracts for recent publications.
Majulab day | NTU Singapore | 2024/07/24
Jeanne Colbois
NUS & Majulab
Majulab day | NTU Singapore | 2024/07/24
Nicolas Laflorencie
Laboratoire de Physique Théorique
Toulouse, France
Fabien Alet
Jeanne Colbois
NUS & Majulab
1
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
\(|\psi(x)|^2\)
1
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Jump
Random on-site
energy
\(|\psi(x)|^2\)
Anderson, Phys. Rev. 109, 1492 (1958)
Mott & Twose, Advances in Physics, 10 (1961)
\(|\psi(x)|^2\)
\(\xi(h, E)\)
\(h\)
\(h\)
\(\forall h , \, \forall E \) : localization !!
(1D, NN)
\(-h\)
\(h\)
1
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Jump
Random on-site
energy
\(|\psi(x)|^2\)
Anderson, Phys. Rev. 109, 1492 (1958)
Mott & Twose, Advances in Physics, 10 (1961)
\(|\psi(x)|^2\)
\(\xi(h, E)\)
\(h\)
\(h\)
\(\forall h , \, \forall E \) : localization !!
(1D, NN)
\(-h\)
\(h\)
Magnetization / correlations
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
High energy eigenstates of an isolated many-body quantum spin chain in random field
... through simple observables
2
Many-body effects...
3
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Can we still say that high-energy many-body eigenstates are localized?
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Can we still say that high-energy many-body eigenstates are localized?
If yes: no transport.
Simple example of an isolated quantum system that cannot thermalize
See Anderson, 1958
3
4
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
1. From single fermion to many-body Anderson localization
2. Extreme magnetization
3. The role of interactions : instabilities
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
P. Jordan and E. Wigner, Z. Physik 47, 631–651 (1928)
Anderson, Phys. Rev. 109, 1492 (1958)
\(|\psi(x)|^2\)
\(\xi(h, E)\)
Charge is conserved
1 fermion
5
\(-h\)
\(h\)
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
P. Jordan and E. Wigner, Z. Physik 47, 631–651 (1928)
Anderson, Phys. Rev. 109, 1492 (1958)
Magnetic field
Spin-flip
Charge is conserved
Magnetization is conserved
1 fermion
1 spin up
5
\(|\psi(x)|^2\)
\(\xi(h, E)\)
\(-h\)
\(h\)
Jordan-Wigner
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
\(L/2\) fermions
\(\sum_i S_i^{z} = 0\)
P. Jordan and E. Wigner, Z. Physik 47, 631–651 (1928)
6
Magnetic field
Spin-flip
Charge is conserved
Magnetization is conserved
\(-h\)
\(h\)
Jordan-Wigner
Anderson, Phys. Rev. 109, 1492 (1958)
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
\(L/2\) fermions
Jordan-Wigner
\(L/2\) fermions
\(\sum_i S_i^{z} = 0\)
Magnetic field
Spin-flip
Magnetization is conserved
\(-h\)
\(h\)
Charge is conserved
P. Jordan and E. Wigner, Z. Physik 47, 631–651 (1928)
Anderson, Phys. Rev. 109, 1492 (1958)
6
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
7
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
7
\(\epsilon\)
\(\xi(\epsilon, W)\)
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
\(\epsilon\)
\(\xi(\epsilon, W)\)
7
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
\(\epsilon\)
\(\xi(\epsilon, W)\)
7
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
\(\epsilon\)
\(\xi(\epsilon, W)\)
7
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Some eigenstate
J. C., N. Laflorencie, PRB (2023)
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
8
\(|\langle S_i^{z}\rangle| < 1/2\)
Some eigenstate
J. C., N. Laflorencie, PRB (2023)
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
8
\(|\langle S_i^{z}\rangle| < 1/2\)
Some eigenstate
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
J. C., N. Laflorencie, PRB (2023)
8
\(|\langle S_i^{z}\rangle| < 1/2\)
Some eigenstate
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
J. C., N. Laflorencie, PRB (2023)
8
\(|\langle S_i^{z}\rangle| < 1/2\)
8
M. F. Schilling, The College Mathematics Journal 21(3), 196-207 (1990)
P. Révész, Proc. 1978 Int'l Cong. of Mathematicians, 749-754 (1980)
\(L = 176 \)
HTTHTHH
THTHHT
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
9
HTTHTHTTHTHHHTHTTHHTTHHTHTTTHHHTTHTHTHTHHTHTHTHTHTHHTHTHHTHTHTHHTHTHTHHTHTHTTHTHTHTHHHTHTHTHTTHHTHTHTHTHHTHHHTTTHHTHTHTHTHTHTHHTHTHTHHTHTHHTTHTHHTHTHTHHTHTHHTHTHTHTHTHHTHTHHTHT
176 (81 T / 95 H )
HTTTHTTTHTHTHHTHHHHHHTTTTHHHHHHHTHTHHHTTHTHHTHHTTTHHHTHHHTTHHHHTHHTHHHTTTHTHTTHTHTTHHTHTTHTHTTTTTTTHHTHTHHHTHHTTHHTTTTTHHHTTHTHTHHTHTTHTTHHHHTHTHHHTTTTTHTHTTHHTHTTHHTHHHHTHHTHT
176 (83 T / 93 H )
M. F. Schilling, The College Mathematics Journal 21(3), 196-207 (1990)
P. Révész, Proc. 1978 Int'l Cong. of Mathematicians, 749-754 (1980)
10
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
HTTHTHTTHTHHHTHTTHHTTHHTHTTTHHHTTHTHTHTHHTHTHTHTHTHHTHTHHTHTHTHHTHTHTHHTHTHTTHTHTHTHHHTHTHTHTTHHTHTHTHTHHTHHHTTTHHTHTHTHTHTHTHHTHTHTHHTHTHHTTHTHHTHTHTHHTHTHHTHTHTHTHTHHTHTHHTHT
176 (81 T / 95 H )
HTTTHTTTHTHTHHTHHHHHHTTTTHHHHHHHTHTHHHTTHTHHTHHTTTHHHTHHHTTHHHHTHHTHHHTTTHTHTTHTHTTHHTHTTHTHTTTTTTTHHTHTHHHTHHTTHHTTTTTHHHTTHTHTHHTHTTHTTHHHHTHTHHHTTTTTHTHTTHHTHTTHHTHHHHTHHTHT
176 (83 T / 93 H )
M. F. Schilling, The College Mathematics Journal 21(3), 196-207 (1990)
P. Révész, Proc. 1978 Int'l Cong. of Mathematicians, 749-754 (1980)
10
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
HTTHTHTTHTHHHTHTTHHTTHHTHTTTHHHTTHTHTHTHHTHTHTHTHTHHTHTHHTHTHTHHTHTHTHHTHTHTTHTHTHTHHHTHTHTHTTHHTHTHTHTHHTHHHTTTHHTHTHTHTHTHTHHTHTHTHHTHTHHTTHTHHTHTHTHHTHTHHTHTHTHTHTHHTHTHHTHT
176 (81 T / 95 H )
HTTTHTTTHTHTHHTHHHHHHTTTTHHHHHHHTHTHHHTTHTHHTHHTTTHHHTHHHTTHHHHTHHTHHHTTTHTHTTHTHTTHHTHTTHTHTTTTTTTHHTHTHHHTHHTTHHTTTTTHHHTTHTHTHHTHTTHTTHHHHTHTHHHTTTTTHTHTTHHTHTTHHTHHHHTHHTHT
176 (83 T / 93 H )
M. F. Schilling, The College Mathematics Journal 21(3), 196-207 (1990)
P. Révész, Proc. 1978 Int'l Cong. of Mathematicians, 749-754 (1980)
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
10
11
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
11
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
11
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
11
:
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
:
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
11
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
:
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
11
12
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
12
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
13
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
13
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
13
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
SPIN FREEZING !
CHAIN BREAKING !
14
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
14
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
14
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
15
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Extreme value transition
Novel numerical methods?
\(h\)
Distributions predicted by extreme value
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
16
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Attraction /Repulsion
Ising
16
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Polynomial \(\rightarrow\) Exponential
Simulations of MBL lattice models | Fabien Alet | Cargese
Attraction /Repulsion
Ising
16
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Polynomial \(\rightarrow\) Exponential
See for instance Pietracaprina et al., SciPost Phys. 5, 045
Simulations of MBL lattice models | Fabien Alet | Cargese
Attraction /Repulsion
Ising
16
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Polynomial \(\rightarrow\) Exponential
See for instance Pietracaprina et al., SciPost Phys. 5, 045
Simulations of MBL lattice models | Fabien Alet | Cargese
Attraction /Repulsion
Ising
16
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
17
Anderson localized
(insulator)
disorder \(h \)
Interaction \(\Delta\)
Recent review : Sierant et al., arXiv:2403.07111
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Anderson localized
(insulator)
disorder \(h \)
Ergodic
("metal")
Interaction \(\Delta\)
Many-body localized
Recent review : Sierant et al., arXiv:2403.07111
17
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Anderson localized
(insulator)
disorder \(h \)
Ergodic
("metal")
Many-body localized
Interaction \(\Delta\)
Recent review : Sierant et al., arXiv:2403.07111
Debate :
17
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
Anderson localized
(insulator)
disorder \(h \)
Ergodic
("metal")
?
Interaction \(\Delta\)
Many-body localized
Many-body localized
Debate :
Recent review : Sierant et al., arXiv:2403.07111
17
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
18
\(\delta_{\min} \rightarrow 1/2\)
\(\delta_{\min} \sim L^{-\gamma}\rightarrow 0\)
JC, F. Alet, N. Laflorencie, arXiv:2403.09608
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5)
Anderson localized
(insulator)
disorder \(h \)
?
Interaction \(\Delta\)
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5)
Anderson localized
(insulator)
disorder \(h \)
?
Interaction \(\Delta\)
Avalanche theory:
if \(\xi > \xi_{\mathrm{av.}}\) then the system becomes ergodic
18
JC, F. Alet, N. Laflorencie, arXiv:2403.09608
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
\(\Delta/J\)
\(h/J \)
Anderson localized
(insulator)
1
0.75
0.5
0.25
0
0
1
2
3
4
5
6
7
8
9
10
\(\delta_{\min} \rightarrow 1/2\)
\(\delta_{\min} \sim L^{-\gamma}\rightarrow 0\)
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5)
Avalanche theory:
if \(\xi > \xi_{\mathrm{av.}}\) then the system becomes ergodic
18
JC, F. Alet, N. Laflorencie, arXiv:2403.09608
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
\(\Delta/J\)
\(h/J \)
Anderson localized
(insulator)
1
0.75
0.5
0.25
0
0
1
2
3
4
5
6
7
8
9
10
In the XXZ spin-chain
Avalanche theory + numerical results:
weak interactions \(\rightarrow\) ergodic!
\(\delta_{\min} \rightarrow 1/2\)
\(\delta_{\min} \sim L^{-\gamma}\rightarrow 0\)
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5)
Avalanche theory:
if \(\xi > \xi_{\mathrm{av.}}\) then the system becomes ergodic
18
JC, F. Alet, N. Laflorencie, arXiv:2403.09608
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
19
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5)
Avalanche theory:
if \(\xi > \xi_{\mathrm{av.}}\) then the system becomes ergodic
How to evaluate \(\xi\) in the presence of interactions?
JC, F. Alet, N. Laflorencie, arXiv:2403.09608
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5)
Avalanche theory:
if \(\xi > \xi_{\mathrm{av.}}\) then the system becomes ergodic
How to evaluate \(\xi\) in the presence of interactions?
\(\Delta/J\)
\(h/J \)
Anderson localized
(insulator)
1
0.75
0.5
0.25
0
0
1
2
3
4
5
6
7
8
9
10
19
JC, F. Alet, N. Laflorencie, arXiv:2403.09608
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5)
Avalanche theory:
if \(\xi > \xi_{\mathrm{av.}}\) then the system becomes ergodic
How to evaluate \(\xi\) in the presence of interactions?
\(\Delta/J\)
\(h/J \)
Anderson localized
(insulator)
1
0.75
0.5
0.25
0
0
1
2
3
4
5
6
7
8
9
10
19
JC, F. Alet, N. Laflorencie, arXiv:2403.09608
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5)
Avalanche theory:
if \(\xi > \xi_{\mathrm{av.}}\) then the system becomes ergodic
How to evaluate \(\xi\) in the presence of interactions?
\(\Delta/J\)
\(h/J \)
Anderson localized
(insulator)
1
0.75
0.5
0.25
0
0
1
2
3
4
5
6
7
8
9
10
19
JC, F. Alet, N. Laflorencie, arXiv:2403.09608
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
\(|\psi(x)|^2\)
\(\xi(h, E)\)
Anderson localization
in 1D: \(\forall E\)
20
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
\(|\psi(x)|^2\)
\(\xi(h, E)\)
Anderson localization
in 1D: \(\forall E\)
SPIN FREEZING!
CHAIN BREAKING!
20
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
\(|\psi(x)|^2\)
\(\xi(h, E)\)
Anderson localization
in 1D: \(\forall E\)
SPIN FREEZING!
CHAIN BREAKING!
disorder \(h \)
Interaction \(\Delta\)
@ High energy!
20
COLBOIS | INSTABILITIES IN RANDOM SPIN CHAINS | MAJULAB | 07.2024
1. How to show
2. True or false: Anderson localization is a purely quantum phenomenon
3. Is many-body localization different from "many-body Anderson" localization?
4. How can you use tensor networks to count
the number of ground states of a generalized Ising model?
21
22
Weitao CHEN
Sen MU
Nyayabanta SWAIN
Noam IZEM
Logarithmically slow expansion of a
quantum logarithmic-multifractal
wave packet over time
Localization, Multifractality and Chaos in complex quantum systems;
Random Matrices
Anderson localization/transition in cold atom systems
Multifractality
Numerical simulations
Example of a
multifractal eigenstate for one electron in a disordered potential:
neither localized nor metallic
The logarithm of the wave density
of a localized wave packet in 2D
exhibits similar scaling behaviors as a
growing interface
in the KPZ class
Quantum information and topological phases of matter
Kardar-Parisi-Zhang
universality class
Gabriel
LEMARIE
Quantum Monte Carlo
Eigenstate to Hamiltonian construction
Kardar-Parisi-Zhang universality class
Using EHC, we map the ground state of a 2D Hamiltonian in random disorder to an exotic excited state of a target Hamiltonian
\(L/2\) fermions
\(S_z = 0\)
In the Anderson basis:
Anderson
orbitals \(m\)
What about high temperatures / high energy eigenstates?
Do isolated quantum systems thermalize?
Thermal average
?
ETH
Time average
Anderson
No growth
of entanglement
J. H. Bardarson, F. Pollmann, and J. E. Moore, PRL 109, 017202 (2012)
M. Znidaric, T. Prosen, and P. Prelovsek PRB 77, 064426 (2008)
Log growth
of entanglement
Initial \(S^z\) basis random product state
+
TEBD
W = 5
W
Ergodic
MBL
2016
Finite L
W
Ergodic
MBL phase/ regimes?
Prethermal
regime?
2023
\(L\) increases
Anderson chain / XX chain
Heisenberg chain
Fréchet
\(10^5 \) samples
Fréchet
\(10^5 \) samples
By Jeanne Colbois
Talk at the Majulab day
Physicist @ CNRS. Here you find slides for *some* of my presentations, as well as visual abstracts for recent publications.