Jonas Neergaard-Nielsen PRO
Researcher @ DTU Physics, Denmark
Jonas S. Neergaard-Nielsen, Ulrich B. Hoff,
Johann Kollath-Bönig, Ulrik L. Andersen
QPIT, Dept. of Physics, Technical University of Denmark
Jonas S. Neergaard-Nielsen, Ulrich B. Hoff,
Johann Kollath-Bönig, Ulrik L. Andersen
QPIT, Dept. of Physics, Technical University of Denmark
Central European Workshop on Quantum Optics 2016
Kolymbari, Crete
Central European Workshop on Quantum Optics 2016
Kolymbari, Crete
live slides: http://bit.ly/cewqo2016
live slides: http://bit.ly/cewqo2016
Goal (dream?):
to engineer macroscopic quantum states
of macroscopic objects
in particular:
a mechanical oscillator being in
a superposition of "here" and "there"
live slides: http://bit.ly/cewqo2016
UB Hoff et al., arXiv:1601.01663
Our proposal:
create and measure a mechanical superposition state using
M. Aspelmeyer, T.J. Kippenberg, F. Marquardt,
Rev. Mod. Phys. 86, 1391 (2014)
live slides: http://bit.ly/cewqo2016
nonlinear, but weak interaction
use strong driving field and linearize
QND interaction
backaction (displacement)
live slides: http://bit.ly/cewqo2016
QND interaction
evolution for
+ quadrature measurement
+ feedback
M. Vanner et al., PNAS 108, 16182 (2011)
live slides: http://bit.ly/cewqo2016
brief pulse when oscillator in max. position - momentum kick
(unresolved sideband regime)
live slides: http://bit.ly/cewqo2016
1. Cooling of one quadrature
2. State transfer
3. Mechanical state tomography
M. Vanner et al., PNAS 108, 16182 (2011)
3 wishes at once!
live slides: http://bit.ly/cewqo2016
1. Cooling of one quadrature
2. State transfer
3. Mechanical state tomography
1. Cooling of one quadrature
2. State transfer
3. Mechanical state tomography
live slides: http://bit.ly/cewqo2016
1. Cooling of one quadrature
2. State transfer
3. Mechanical state tomography
live slides: http://bit.ly/cewqo2016
core tool for hybrid CV-DV QIP
photon-subtracted squeezed vacuum state ("kitten")
UL Andersen, JSNN, Pv Loock, A Furusawa, Nat. Phys. 11, 713 (2015)
reviews: JSNN et al., Prog. Inf. 8, 5 (2011)
live slides: http://bit.ly/cewqo2016
live slides: http://bit.ly/cewqo2016
Mostly Gaussian:
Only photon detection is non-Gaussian
Model everything with covariance matrices and displacement vectors,
finalize with integration over detector's Wigner function
optical pulse
live slides: http://bit.ly/cewqo2016
m = 1
m = 2
m = 3
with 1 thermal phonon
with 5% optical loss
10 dB squeezing
80% detector eff.
live slides: http://bit.ly/cewqo2016
C-W. Lee, H. Jeong,
PRL 106, 220401 (2011)
quantify magnitude and frequency of interference fringes
live slides: http://bit.ly/cewqo2016
effect of phase and amplitude noise in the displacement beam
live slides: http://bit.ly/cewqo2016
mechanical period:
rethermalization time scale:
decoherence time scale:
10 µs
~10 ms (for 100 mK environment)
~100 µs (for a cat state of size α = 4)
- so just about possible to prepare and read out state within one mechanical cycle
live slides: http://bit.ly/cewqo2016
Using
it should be possible to bring a mechanical oscillator into a cat state.
UB Hoff et al., arXiv:1601.01663
related work:
F. Khalili et al., PRL 105, 070403 (2010)
P. Sekatski et al., PRL 112, 080502 (2014)
R. Ghobadi et al., PRL 112, 080503 (2014)
J. Bennett et al., arXiv 1510.05368
A. Rakhubovsky et al., arXiv 1511.08611
...
live slides: http://bit.ly/cewqo2016
manuscript: arXiv:1601.01663
By Jonas Neergaard-Nielsen
CEWQO 2016, Kolymbari