Finding optimal projective packings using a Newton-Kantorovich theorem

John Jasper

joint work w/ Joey Iverson, Dustin Mixon, and Staci Davis

AMS Fall Central Sectional

Special Session on Harmonic Analysis, Frame Theory, and Tilings

https://slides.com/johnjasper/amsstlouis/

The views expressed in this talk are those of the speaker and do not reflect the official policy
or position of the United States Air Force, Department of Defense, or the U.S. Government.

Support

Disclaimer

Results

Newton-Kantorovich:

"Close is good enough"

Outline

Optimal packings as zeros of polynomials

Packings

Definition. Given unit vectors \(\Phi=(\varphi_{i})_{i=1}^{N}\), we define the coherence

\[\mu(\Phi) = \max_{i\neq j}|\varphi_{i}^{\ast}\varphi_{j}^{}|.\]

Measuring how "spread out" vectors are

\[\mu(\Phi) = \cos(\theta)\]

\(\mu(\Phi) = \cos(\theta)\)??

\(\mu(\Phi) = \cos(\theta)\)

Measuring how "spread out" vectors are

Definition. Given unit vectors \(\Phi=(\varphi_{i})_{i=1}^{N}\), we define the coherence

\[\mu(\Phi) = \max_{i\neq j}|\varphi_{i}^{\ast}\varphi_{j}^{}|.\]

Measuring how "spread out" vectors are

Definition. Given unit vectors \(\Phi=(\varphi_{i})_{i=1}^{N}\), we define the coherence

\[\mu(\Phi) = \max_{i\neq j}|\varphi_{i}^{\ast}\varphi_{j}^{}|.\]

Minimizing coherence

between vectors

\(\Updownarrow\)

Maximizing min. angle

between lines

Example.

Measuring how "spread out" vectors are

Definition. Given unit vectors \(\Phi=(\varphi_{i})_{i=1}^{N}\), we define the coherence

\[\mu(\Phi) = \max_{i\neq j}| \varphi_{i}^{\ast}\varphi_{j}|.\]

Given \((D,N)\), find \(\Phi = (\varphi_{i})_{i=1}^{N}\subset\mathbb{F}^{D}\) such that \(\mu(\Phi)\) is minimal.

Goal:

Vectors that are as spread out as possible

Theorem (the Welch bound). For unit vectors \(\Phi=(\varphi_{i})_{i=1}^{N}\) in \(\mathbb{F}^D\)

\[\mu(\Phi)^{2} = \max_{i\neq j}|\varphi_{i}^{\ast}\varphi_{j}^{}|^{2}\geq \frac{N-D}{D(N-1)}.\]

Equality holds if and only if both:

  1. Tight:  \(\displaystyle{\sum_{i=1}^{N}\varphi_{i}\varphi_{i}^{\ast} = \frac{N}{D}\mathbf{I}}.\)
  2. Equiangular:  \(\displaystyle{|\varphi_{i}^{\ast}\varphi_{j}^{}|^{2} = \frac{N-D}{D(N-1)}\quad\text{for all }i\neq j.}\)

Welch bound equality \(\Longleftrightarrow\) equiangular tight frame (ETF)

The Short, Fat Matrix

Let \[\Phi = \big[\varphi_{1}\ \ \varphi_{2}\ \ \cdots\ \ \varphi_{N}\big]\in \mathbb{F}^{D\times N},\]

be a rank \(D\) matrix where each column \(\varphi_{n}\) has norm one.

Then \(\Phi\) is an ETF iff 

(\(\mathbb{F} = \mathbb{C}\) or \(\mathbb{R}\))

\(\displaystyle{\sum_{i=1}^{N}\varphi_{i}\varphi_{i}^{\ast} = \frac{N}{D}\mathbf{I}}.\)

 

\(\displaystyle{|\varphi_{i}^{\ast}\varphi_{j}^{}|^{2} = \frac{N-D}{D(N-1)}}\) for \(i\neq j\)

Examples of equiangular tight frames

Example 2. Consider the (multiple of a) unitary matrix

Example 1. Consider the (multiple of a) unitary matrix

\[\left[\begin{array}{rrrr}1 & -1 & 1 & -1\\ 1 & 1 & -1 & -1\\ 1 & -1 & -1 & 1\end{array}\right]\]

\[\left[\begin{array}{rrrr} 1 & 1 & 1 & 1\\ 1 & -1 & 1 & -1\\ 1 & 1 & -1 & -1\\ 1 & -1 & -1 & 1\end{array}\right]\]

\[\left[\begin{array}{rrrr} 1 & 1 & 1\\ \sqrt{2} & -\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}}\\ 0 & \sqrt{\frac{3}{2}} & -\sqrt{\frac{3}{2}}\end{array}\right]\]

\[\left[\begin{array}{rrrr}\sqrt{2} & -\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}}\\ 0 & \sqrt{\frac{3}{2}} & -\sqrt{\frac{3}{2}}\end{array}\right]\]

\[\frac{1}{\sqrt{2}}\]

\[\frac{1}{\sqrt{2}}\]

Example 3. \(\operatorname{ETF}(6,16)\)

  • Rows are orthogonal
  • Rows are equal norm
  • all dot products of columns are \(\pm \frac{1}{3} = \pm\sqrt{\frac{16-6}{6(16-1)}}\)

\[\frac{1}{\sqrt{3}}\]

\[\Phi = \left[\begin{array}{cccccc} \varphi_{1,1} & \varphi_{1,2} & \varphi_{1,3} & \cdots & \cdots & \varphi_{1,N}\\ \varphi_{2,1} & \varphi_{2,2} & \varphi_{2,3} & \cdots & \cdots & \varphi_{2,N}\\ \varphi_{3,1} & \varphi_{3,2} & \varphi_{3,3} & \cdots & \cdots & \varphi_{3,N}\\ \vdots & \vdots & \vdots & \ddots & & \vdots\\ \varphi_{D,1} & \varphi_{D,2} & \varphi_{D,3} & \cdots & \cdots & \varphi_{D,N}\end{array}\right] \in\mathbb{R}^{D\times N}\]

Real, but we can do complex too

\(\displaystyle{\sum_{i=1}^{N}\varphi_{i}\varphi_{i}^{\top} = \frac{N}{D}\mathbf{I}}.\)

 

\(\displaystyle{(\varphi_{i}^{\ast}\varphi_{j}^{})^{2} = \frac{N-D}{D(N-1)}}\) for \(i\neq j\)

is an ETF iff 

\[\Leftrightarrow\qquad\qquad\sum_{i=1}^{N}\varphi_{d,i}\varphi_{d',i} = \frac{N}{D}\delta_{d,d'}\ \text{for }d\neq d'\]

\[\Leftrightarrow\quad\sum_{d=1}^{D}\varphi_{d,i}\varphi_{d,j} = \frac{N-D}{D(N-1)}\ \text{for }i\neq j\]

It's a bunch of polynomials

\[\Phi = \left[\begin{array}{cccccc} \varphi_{1,1} & \varphi_{1,2} & \varphi_{1,3} & \cdots & \cdots & \varphi_{1,N}\\ \varphi_{2,1} & \varphi_{2,2} & \varphi_{2,3} & \cdots & \cdots & \varphi_{2,N}\\ \varphi_{3,1} & \varphi_{3,2} & \varphi_{3,3} & \cdots & \cdots & \varphi_{3,N}\\ \vdots & \vdots & \vdots & \ddots & & \vdots\\ \varphi_{D,1} & \varphi_{D,2} & \varphi_{D,3} & \cdots & \cdots & \varphi_{D,N}\end{array}\right] \in\mathbb{R}^{D\times N}\]

is an ETF iff 

\[\sum_{i=1}^{N}\varphi_{d,i}\varphi_{d',i} = \frac{N}{D}\delta_{d,d'}\ \text{for }d\neq d'\]

\[\sum_{d=1}^{D}\varphi_{d,i}\varphi_{d,j} = \delta_{i,j}\ \text{for }i\neq j\]

It's a bunch of polynomials

Define polynomial map

\(f:\R^{A}\to\R^{B}\) where

\(f(\Phi)=0\ \Leftrightarrow\ \Phi\) is an ETF

Spread out subspaces

  • \((\mathcal{U}_{n})_{n=1}^{N}\) be \(R\)-dim subspaces of \(\mathbb{F}^{D}\)
  • \(\Phi_{n}\in\mathbb{F}^{D\times R}\) be an ONB for \(\mathcal{U}_{n}\)
  • \(\Pi_{n}\) be proj. onto \(\mathcal{U}_{n}\)

Chordal distance:

\[d_{c}(\mathcal{U}_{i},\mathcal{U}_{j}) = 2^{-1/2}\|\Pi_{i} - \Pi_{j}\|_{\text{Fro}} = \sqrt{R - \|\Phi_{i}^{\ast}\Phi_{j}\|_{\text{Fro}}^{2}}.\]

Measure of "spread outness"

\[\min_{i\neq j}(d_{c}(\mathcal{U}_{i},\mathcal{U}_{j}))^2 = R - \max_{i\neq j}\|\Phi_{i}^{\ast}\Phi_{j}\|_{\text{Fro}}^{2}.\]

 \(\Leftrightarrow\)     \(\displaystyle{\min_{i\neq j} d_{c}(\mathcal{U}_{i},\mathcal{U}_{j})}\) large     \(\Leftrightarrow\)     \(\displaystyle{\max_{i\neq j}\|\Phi_{i}^{\ast}\Phi_{j}\|^{2}_{\text{Fro}}}\) small

Subspaces spread out

Subspaces as spread out as possible

Theorem (the Welch bound).  Suppose

 

Equality holds if and only if both:

  1. Tight: \(\displaystyle{\sum_{n=1}^{N}\Phi_{n}\Phi_{n}^{\ast} = \frac{NR}{D}\mathbf{I}}\)
  2. Equichordal :  \(\displaystyle{\|\Phi_{i}^{\ast}\Phi_{j}\|_{\text{Fro}}^{2} =\frac{R(NR-D)}{D(N-1)}\quad\text{for all }i\neq j.}\)

Simplex bound equality \(\Longleftrightarrow\) equichordal tight fusion frame (ECTFF)

  • \((\mathcal{U}_{n})_{n=1}^{N}\) be \(R\)-dim subspaces of \(\mathbb{F}^{D}\)
  • \(\Phi_{n} \) be an ONB for \(\mathcal{U}_{n}\)

Then, \[\max_{i\neq j}\|\Phi_{i}^{\ast}\Phi_{j}\|^{2}_{\text{Fro}}\geq \frac{R(NR-D)}{D(N-1)}\]

The Short, Fat Matrix

Let \[\Phi = \big[\ \Phi_{1}\ \vert\ \Phi_{2}\ \vert\ \cdots\ \vert\ \Phi_{N}\big]\in \big(\mathbb{F}^{D\times R}\big)^{1\times N},\]

Where \(\Phi_{n}\) is an orthonormal basis for \(\mathcal{U}_{n}\)

Then \(\Phi\) is an ECTFF iff

\(\displaystyle{\sum_{n=1}^{N}\Phi_{n}\Phi_{n}^{\ast} = \frac{NR}{D}\mathbf{I}}\)

 

\(\displaystyle{\|\Phi_{i}^{\ast}\Phi_{j}\|_{\text{Fro}}^{2} =\frac{R(NR-D)}{D(N-1)}\quad\text{for }i\neq j.}\)

Example. ECTFF w/ 10 subspaces of \(\R^{5}\), each of dimension \(5\).

\(\Phi\)

Examples of and ECTFF

It's a bunch of polynomials

is an ECTFF iff 

\[\sum_{n=1}^{N}\sum_{r=1}^{R}\varphi_{d,r,n}\varphi_{d',r,n} = \frac{NR}{D}\delta_{d,d'}\quad \text{for all }d,d'\]

\[\sum_{r=1}^{R}\sum_{r'=1}^{R}\left(\sum_{d=1}^{D}\varphi_{d,r,n}\varphi_{d,r',n'}\right)^{2} = \frac{R(NR-D)}{D(N-1)}\quad \text{for } n\neq n'\]

\[\Phi = \big[\ \Phi_{1}\ \vert\ \Phi_{2}\ \vert\ \cdots\ \vert\ \Phi_{N}\big],\]

\[\left[\begin{array}{ccc|ccc|c|ccc} \varphi_{1,1,1} & \cdots & \varphi_{1,R,1} & \varphi_{1,1,2} & \cdots & \varphi_{1,R,2} & \cdots & \varphi_{1,1,N} & \cdots & \varphi_{1,R,N}\\[1ex] \varphi_{2,1,1} & \cdots & \varphi_{2,R,1} & \varphi_{2,1,2} & \cdots & \varphi_{2,R,2} & \cdots & \varphi_{2,1,N} & \cdots & \varphi_{2,R,N}\\ \vdots & & \vdots & \vdots & & \vdots & & \vdots & & \vdots\\ \varphi_{D,1,1} & \cdots & \varphi_{D,R,1} & \varphi_{D,1,2} & \cdots & \varphi_{D,R,2} & \cdots & \varphi_{D,1,N} & \cdots & \varphi_{D,R,N} \end{array}\right] \]

\[=\]

\(\displaystyle{\sum_{n=1}^{N}\Phi_{n}\Phi_{n}^{\ast} = \frac{NR}{D}\mathbf{I}}\)

\(\Phi_{n}^{\ast}\Phi^{}_{n} = \mathbf{I}_{R}\) for each \(n\)

\(\displaystyle{\|\Phi_{n}^{\ast}\Phi_{n'}\|_{\text{Fro}}^{2} =\frac{R(NR-D)}{D(N-1)}\quad\text{for }n\neq n'.}\)

\[\sum_{d=1}^{D}\varphi_{d,n,r}\varphi_{d,n,r'} = \delta_{r,r'}\text{for all }n,r,r'\]

It's a bunch of polynomials

is an ETF iff 

\[\sum_{n=1}^{N}\sum_{r=1}^{R}\varphi_{d,r,n}\varphi_{d',r,n} = \frac{NR}{D}\delta_{d,d'}\quad \text{for all }d,d'\]

\[\sum_{r=1}^{R}\sum_{r'=1}^{R}\left(\sum_{d=1}^{D}\varphi_{d,r,n}\varphi_{d,r',n'}\right)^{2} = \frac{R(NR-D)}{D(N-1)}\quad \text{for } n\neq n'\]

\[\Phi = \big[\ \Phi_{1}\ \vert\ \Phi_{2}\ \vert\ \cdots\ \vert\ \Phi_{N}\big],\]

\[\left[\begin{array}{ccc|ccc|c|ccc} \varphi_{1,1,1} & \cdots & \varphi_{1,R,1} & \varphi_{1,1,2} & \cdots & \varphi_{1,R,2} & \cdots & \varphi_{1,1,N} & \cdots & \varphi_{1,R,N}\\[1ex] \varphi_{2,1,1} & \cdots & \varphi_{2,R,1} & \varphi_{2,1,2} & \cdots & \varphi_{2,R,2} & \cdots & \varphi_{2,1,N} & \cdots & \varphi_{2,R,N}\\ \vdots & & \vdots & \vdots & & \vdots & & \vdots & & \vdots\\ \varphi_{D,1,1} & \cdots & \varphi_{D,R,1} & \varphi_{D,1,2} & \cdots & \varphi_{D,R,2} & \cdots & \varphi_{D,1,N} & \cdots & \varphi_{D,R,N} \end{array}\right] \]

\[=\]

\[\sum_{d=1}^{D}\varphi_{d,n,r}\varphi_{d,n,r'} = \delta_{r,r'}\text{for all }n,r,r'\]

Define polynomial map

\(f:\R^{A}\to\R^{B}\) where

\(f(\Phi)=0\ \Leftrightarrow\ \Phi\) is an ECTFF

What's close enough?

Theorem (Newton-Kantorovich) [Cohn, Kumar, Minton '16]. 

  • \(V\) and \(W\) fin. dim. normed spaces
  • Fix \(x_{0}\in V\) and \(\varepsilon>0\)
  • \(f:B(x_{0},\varepsilon)\to W\) is \(C^{1}\)

If \(\exists\) linear \(T:W\to V\) such that

\[\|\mathbf{I}_{W} - Df(x)T\|<1-\frac{\|T\|\|f(x_{0})\|}{\varepsilon}\quad\text{for all }x\in B(x_{0},\varepsilon),\]

then \(\exists\, x^{\ast}\in B(x_{0},\varepsilon)\) such that \(f(x^{\ast})=0\).

Plan:

  • Find \(\tilde{x}_{0}\) s.t. \(f(\tilde{x}_{0})\approx 0\).
  • \(\tilde{T} = \) pseudo inverse of Jacobian \(Df(\tilde{x}_{0})\)
  • Round both to rationals \(x_{0}\) and \(T\).
  • Find \(\varepsilon\) s.t. (\(\ast\)) holds. (Check this in computer with exact arithmetic.)

Problems!

How to compute \(\|T\|\)??

How to check (\(\ast\)) for \(\infty\) many \(x\)'s??

(\(\ast\))

Computing \(\|T\|\) exactly

Proposition. If \(T:\mathbb{R}^{C}\to\mathbb{R}^{D}\) is linear, both spaces have \(\ell^{\infty}\) norm, then the operator norm 

\[\|T\|_{\infty\to\infty} = \max\{\|T_{i}\|_{1} : T_{i}\text{ is a col. of }T\}.\]

Entries of \(T\) in \(\mathbb{Q}\) \(\ \ \implies\ \ \) Can compute\(\|T\|_{\infty\to\infty}\) exactly

Controlling the Jacobian

Theorem [Cohn, Kumar, Minton '16]. Suppose \(\varepsilon>0\), \(C\geq D\), \(x_{0}\in\R^{C}\)

  • \(f:\R^{C}\to\R^{D}\) polynomial map of total degree \(d\)
  • \(\eta = \max\{1,\|x_{0}\|_{\infty}+\varepsilon\}\)

Then, \(\forall\, x\in B(x_{0},\varepsilon)\)

\[\|Df(x) - Df(x_{0})\|_{\infty\to\infty}\leq |f|d(d-1)\varepsilon\eta^{d-2}.\]

Corollary. Suppose \(f\) is as above. If there exists \(\varepsilon>0\), \(x_{0}\in \R^{C}\), and linear \(T:\R^{D}\to \R^{C}\) such that

\[\|Df(x_0)  T - \mathbf{I}\|_{\infty\to\infty}+ \varepsilon|f|d(d-1)\eta^{d-2}\|T\| _{\infty\to\infty}< 1-\frac{\|T\|_{\infty\to\infty} \|f(x_0)\|}{\varepsilon},\]

then \(\exists\,x^{\ast}\) such that \(f(x^{\ast})=0\).

Close enough!

\[\begin{array}{|c|c|c|} \hline D & R & N\\ \hline 4          & 2          & 4,5-6      \\ 5          & 2          & 5-10       \\ 6          & 2          & 5-14       \\ 6          & 3          & 5-16       \\ 7          & 2          & 6-17       \\ 7          & 3          & 5-22       \\ 8          & 2          & 6-21       \\ 8          & 3          & 5-28       \\ 8          & 4          & 5-30       \\ 9          & 2          & 7-24       \\ 9          & 3          & 5-34       \\ 9          & 4          & 5-38       \\ 10         & 2          & 8-27       \\ 10         & 3          & 5-40       \\ 10         & 4          & 5-46       \\ 10         & 5          & 5-48       \\ \hline \end{array}\]

Theorem. For each entry in the table

\(\exists\) ECTFF with \(N\) subpaces, each with dimension \(R\) in \(\R^{D}\).

Results on Subspaces

For each \((D,R)\), these are the expected \(N\)'s.

\(\# \)constraints\(\,<\#\)variables

Redundancy Two ETFs

\(d\)'s in boxes due to Fallon, Iverson, J, and Mixon

\(2\)-Circulant

The \(11\times 22\) ETF found by Fallon and Iverson:

Real part

Imaginary part

Real part

Imaginary part

The \(17\times 34\) ETF found by Iverson, J, Mixon:

Known exact 2-circulants

Conjecture (strong(ish) \(d\times 2d\) conjecture) [Iverson, J, Mixon]. For each \(d\), there exists  a 2-circulant \(d\times 2d\) ETF.

Full conjecture gives dim. of manifold

Theorem [Iverson, J, Mixon]. The strong \(d\times 2d\) conjecture holds for \(d\leq 162\).

\[C_{\mathbf{x}} = \left[\begin{array}{ccccc} x_{0} & x_{d-1} & x_{d-2} & \cdots & x_{1}\\ x_{1} & x_{0} & x_{d-1} & \cdots & x_{2}\\ x_{2} & x_{1} & x_{0} & \cdots & x_{3}\\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{d-1} & x_{d-2} & x_{d-3} & \cdots & x_{0} \end{array}\right]\]

For \(\mathbf{x}\in \mathbb{C}^{d}\),

We want \(\mathbf{x},\mathbf{y}\in\mathbb{C}^{d}\) such that \(\Phi = [C_{\mathbf{x}}\ \ C_{\mathbf{y}}]\) is an ETF.

Make a polynomial map \(f\) such that \(f(\mathbf{x},\mathbf{y})=0\ \Leftrightarrow [C_{\mathbf{x}}\ \ C_{\mathbf{y}}]\) is an ETF.

Apply Newton-Kantorovich to \(f\).

Thanks!

AMS St Louis Oct 2025

By John Jasper

AMS St Louis Oct 2025

  • 66