Framework for empirical analysis of graph metric robustness

Juraj Micko, jm2186

University of Cambridge

  • Graph
G \in \mathbb{V} \times \mathbb{E}
  • Metric
f : (\mathbb{V} \times \mathbb{E}) \rightarrow ( \mathbb{V} \Rightarrow \mathbb{R} )
  • Robustness
r : \mathbb{F} \times (\mathbb{V} \times \mathbb{E}) \rightarrow \mathbb{R}^n

Framework for empirical analysis of graph metric robustness

  • Empirical analysis
\overline{r} (f, G)
  • Framework

Inspired by:

  • Protein interaction networks (edges have weights of certainty)

My goals:

  • verify the results of the paper
  • generalise to any graph
    + prediction

Implementation

  • loading graphs

  • generating new graphs by randomly deleting edges
  • evaluating certain metrics on the graphs

  • storing the result

  • visualise generated graphs

Social network dataset

from https://snap.stanford.edu/data/

randomly deleting
10% of edges

$ graffs dataset viz social-network
$ graffs graphs generate -n 100 --dataset social-network --params 0.1
$ graffs graphs viz 1

Rank continuity

Similar highest-ranked proteins at consecutive thresholds

Rank instability

How the rank of the 1% most important nodes changes over various thresholds

Measuring robustness

Rank identifiability

Recovering the set of the highest-ranked nodes at different thresholds

Implementation

  • Project management:
  • Graph operations:
  • Language:
  • Database:
  • High-performance computing:

Next steps

  • Implement robustness functions
  • Run evaluations, observe
  • Writing dissertation

Thank you!

Part II Progress report

By Juraj Mičko

Part II Progress report

  • 242