by Kacper Pluta

## Show me a Rigid Motion

Solar System Animation: https://youtu.be/gvSUPFZp7Yo

\left| \begin{array}{lllll} \mathcal{U} & : & \mathbb{C} & \to & \mathbb{C} \\ & & \mathbf{x} & \mapsto & \mathbf{a} \cdot \mathbf{x} + \mathbf{t} \end{array} \right.
$\left| \begin{array}{lllll} \mathcal{U} & : & \mathbb{C} & \to & \mathbb{C} \\ & & \mathbf{x} & \mapsto & \mathbf{a} \cdot \mathbf{x} + \mathbf{t} \end{array} \right.$

## Rigid Motions on

\mathbb{C}
$\mathbb{C}$

## Properties

• Do preserve distances
• Bijective
\mathbf{a}
$\mathbf{a}$

- a unit modulus complex number

\mathbf{t}
$\mathbf{t}$

- a complex number

\theta = \arg(\mathbf{a})
$\theta = \arg(\mathbf{a})$

- a rotation angle

\left| \begin{array}{lllll} \mathcal{U} & : & \mathbb{R}^2 & \to & \mathbb{R}^2 \\ & & \mathbf{x} & \mapsto & \mathbf{R} \mathbf{x} + \mathbf{t} \end{array} \right.
$\left| \begin{array}{lllll} \mathcal{U} & : & \mathbb{R}^2 & \to & \mathbb{R}^2 \\ & & \mathbf{x} & \mapsto & \mathbf{R} \mathbf{x} + \mathbf{t} \end{array} \right.$

## Rigid Motions on

\mathbb{R}^2
$\mathbb{R}^2$
\mathbf{R}
$\mathbf{R}$

- a rotation matrix

\mathbf{t}
$\mathbf{t}$

- a translation vector

• Isometry

• Bijective

## Show me a Digitized Rigid Motion

U = \mathcal{D}\ \circ \mathcal{U}
$U = \mathcal{D}\ \circ \mathcal{U}$

## Properties

• Non-injective
• Non-surjective
• Do not preserve distances
\mathcal{U}
$\mathcal{U}$

## Digitized Rigid Motions

where

\mathcal{D}
$\mathcal{D}$

is a digitization operator

U = \mathcal{D}\ \circ \mathcal{U}
$U = \mathcal{D}\ \circ \mathcal{U}$

## Properties

• Non-injective
• Non-surjective
• Do not preserve distances
\mathcal{U}
$\mathcal{U}$

## Digitized Rigid Motions

where

\mathcal{D}
$\mathcal{D}$

is a digitization operator

## Agenda

Part I: 2D Discrete Spaces

• Introduction to 2D Regular Grids
• Neighborhood Motion Maps
• Digitized Rigid Motions on Square vs. Hexagonal Grids
• Bijective Digitized Rotations on Square Grid

Part II: 3D Digital Space

• Introduction to Cubic Grid
• Quick Introduction to 3D Rigid Motions
• Spatial Rotations and Quaternions
• Bijectivity of 3D Digitized Rotations

Conclusion & Perspectives

# 2D Discrete Spaces

## Contributions in Short

• A general framework to study digitized rigid motions
• Comparison of the digitized rigid motions defined on the square and hexagonal grids
• Characterization of bijective digitized:
• rigid motions on the square grid
• rotations on the hexagonal grid
• Three algorithms to characterize if a digitized rigid motion is bijective when restricted to a finite set

## I Am Going to Talk About

• A general framework to study digitized rigid motions
• Comparison of the digitized rigid motions defined on the square and hexagonal lattices
• Characterization of bijective digitized rigid motions on the square grid

## The Lattices

\mathbb{Z}[\omega] = \mathbb{Z} \oplus \mathbb{Z}\omega, \omega = -\frac{1}{2} + \frac{\sqrt{3}}{2} i
$\mathbb{Z}[\omega] = \mathbb{Z} \oplus \mathbb{Z}\omega, \omega = -\frac{1}{2} + \frac{\sqrt{3}}{2} i$

The grids are then denoted by

\mathcal{H}
$\mathcal{H}$
\mathbb{Z}[i] = \mathbb{Z} \oplus \mathbb{Z}i
$\mathbb{Z}[i] = \mathbb{Z} \oplus \mathbb{Z}i$

Eisenstein:

and Gaussian:

integers

## Properties

Property Gaussian integers Eisenstein integers
conjugate
squared modulus
units
\bar{\mathbf{x}} = a - b i
$\bar{\mathbf{x}} = a - b i$
\bar{\mathbf{x}} = (a - b) - b \omega
$\bar{\mathbf{x}} = (a - b) - b \omega$
| \mathbf{x} | = \mathbf{x} \cdot \bar{\mathbf{x}} = a^2 + b^2
$| \mathbf{x} | = \mathbf{x} \cdot \bar{\mathbf{x}} = a^2 + b^2$
| \mathbf{x} | = \mathbf{x} \cdot \bar{\mathbf{x}} = a^2 - a b + b^2
$| \mathbf{x} | = \mathbf{x} \cdot \bar{\mathbf{x}} = a^2 - a b + b^2$
\Upsilon = \{ \pm 1, \pm i \}
$\Upsilon = \{ \pm 1, \pm i \}$
\Upsilon = \{ \pm 1, \pm \omega, \pm \bar{\omega} \}
$\Upsilon = \{ \pm 1, \pm \omega, \pm \bar{\omega} \}$
 divisibility
\mathbf{y} | \mathbf{x} \text{ if } \exists \mathbf{z} \in \mathbb{Z}[\varkappa] \text{ such that } \mathbf{x} = \mathbf{y} \cdot \mathbf{z} \text{ and } \mathbf{y} \in \mathbb{Z}[\varkappa]
$\mathbf{y} | \mathbf{x} \text{ if } \exists \mathbf{z} \in \mathbb{Z}[\varkappa] \text{ such that } \mathbf{x} = \mathbf{y} \cdot \mathbf{z} \text{ and } \mathbf{y} \in \mathbb{Z}[\varkappa]$
 greatest common divisor
\gcd(\mathbf{x}, \mathbf{y}) = \mathbf{z} \in \mathbb{Z}[\varkappa]\text{ is defined as a largest }
$\gcd(\mathbf{x}, \mathbf{y}) = \mathbf{z} \in \mathbb{Z}[\varkappa]\text{ is defined as a largest }$
\mathbf{z} \in \mathbb{Z}[\varkappa]\text{ (up to multiplications by units) which }
$\mathbf{z} \in \mathbb{Z}[\varkappa]\text{ (up to multiplications by units) which }$
\text{divides both } \mathbf{x}\text{ and }\mathbf{y}
$\text{divides both } \mathbf{x}\text{ and }\mathbf{y}$
\text{Giving } a, b \in \mathbb{Z}\text{ and }\mathbf{x},\mathbf{y}, \in \mathbb{Z}[\varkappa], \varkappa \in \{i, \omega\}
$\text{Giving } a, b \in \mathbb{Z}\text{ and }\mathbf{x},\mathbf{y}, \in \mathbb{Z}[\varkappa], \varkappa \in \{i, \omega\}$

## Square grid

+ Sampling is easy to define

## Hexagonal grid

+ Uniform connectivity

+ Equidistant neighbors

+ Sampling is optimal

- Sampling is not optimal (ask bees)

- Neighbors are not equidistant

- Memory addressing is not trivial

- Sampling is difficult to define

## Square grid

+ Sampling is easy to define

## Hexagonal grid

+ Uniform connectivity

+ Equidistant neighbors

+ Sampling is optimal

~ Memory addressing is not trivial

~ Sampling is difficult to define

## Pros and Cons

- Sampling is not optimal (ask bees)

- Neighbors are not equidistant

## Digitization Model

A digitization cell of

0
$0$

denoted by

\mathcal{C}(0).
$\mathcal{C}(0).$

## Digitization Model

The digitization operator is defined as

\mathcal{D}: \mathbb{C} \rightarrow \mathbb{Z}[\varkappa]
$\mathcal{D}: \mathbb{C} \rightarrow \mathbb{Z}[\varkappa]$

such that

\forall \mathbf{x} \in \mathbb{C}, \exists! \mathcal{D}(\mathbf{x}) \in \mathbb{Z}[\varkappa]
$\forall \mathbf{x} \in \mathbb{C}, \exists! \mathcal{D}(\mathbf{x}) \in \mathbb{Z}[\varkappa]$
\mathbf{x} \in \mathcal{C}(\mathcal{D}(\mathbf{x})).
$\mathbf{x} \in \mathcal{C}(\mathcal{D}(\mathbf{x})).$

and

\mathbf{p}
$\mathbf{p}$
\mathbf{k}
$\mathbf{k}$

## Conditions for Bijectivity

A digitized rotation is bijective if and only if

\forall \mathbf{p} \in \mathbb{Z}[\omega] \; \exists ! \mathbf{q} \in \mathbb{Z}[\omega]
$\forall \mathbf{p} \in \mathbb{Z}[\omega] \; \exists ! \mathbf{q} \in \mathbb{Z}[\omega]$

such that

\mathcal{U}(\mathbf{q}) \in \mathcal{C}(\mathbf{p}).
$\mathcal{U}(\mathbf{q}) \in \mathcal{C}(\mathbf{p}).$
\mathcal{U}
$\mathcal{U}$

- a continuous rotation

\mathcal{C}(\mathbf{p})
$\mathcal{C}(\mathbf{p})$

- a digitization cell centered at

\mathbf{p}
$\mathbf{p}$
\mathbb{Z}[\omega]
$\mathbb{Z}[\omega]$

- the hexagonal lattice

## "Double" Surjectivity Condition for Bijectivity

\mathbf{a} \in \mathbb{C}
$\mathbf{a} \in \mathbb{C}$
\mathcal{C}_{\frac{\mathbf{a}}{|\mathbf{a}|}}(\mathcal{U}(\mathbf{q}))
$\mathcal{C}_{\frac{\mathbf{a}}{|\mathbf{a}|}}(\mathcal{U}(\mathbf{q}))$

- a complex number

- a rotated digitization cell

## Set of Remainders

The "double" surjectivity condition is then

provided that

S_{\mathbf{a}}(\mathbb{Z}[\omega], \mathbb{Z}[\omega]) \cap \mathcal{C}_1(0) = S_{\mathbf{a}}(\mathbb{Z}[\omega], \mathbb{Z}[\omega]) \cap \mathcal{C}_{\frac{\mathbf{a}}{|\mathbf{a}|}}(0).
$S_{\mathbf{a}}(\mathbb{Z}[\omega], \mathbb{Z}[\omega]) \cap \mathcal{C}_1(0) = S_{\mathbf{a}}(\mathbb{Z}[\omega], \mathbb{Z}[\omega]) \cap \mathcal{C}_{\frac{\mathbf{a}}{|\mathbf{a}|}}(0).$

## Set of Remainders

The "double" surjectivity condition is then

provided that

S_{\mathbf{a}}(\mathbb{Z}[\omega], \mathbb{Z}[\omega]) \cap \mathcal{C}_{\mathbf{a}}(0) = S_{\mathbf{a}}(\mathbb{Z}[\omega], \mathbb{Z}[\omega]) \cap \mathcal{C}_{|\mathbf{a}|}(0).
$S_{\mathbf{a}}(\mathbb{Z}[\omega], \mathbb{Z}[\omega]) \cap \mathcal{C}_{\mathbf{a}}(0) = S_{\mathbf{a}}(\mathbb{Z}[\omega], \mathbb{Z}[\omega]) \cap \mathcal{C}_{|\mathbf{a}|}(0).$

## Factorization of Primitive Eisenstein Integers

s, t \in \mathbb{Z}
$s, t \in \mathbb{Z}$
0 < s < t
$0 < s < t$

and

t - s
$t - s$

not being divisible by 3.

a = s^2 + 2 s t, b = t^2 + 2 s t
$a = s^2 + 2 s t, b = t^2 + 2 s t$

and

c = s^2 + t^2 + s t,
$c = s^2 + t^2 + s t,$

such that

## Set of Remainders

The "double" surjectivity condition is then

provided that

## Proving Bijectivity

Step 1: For which s and t,

or

are in the green but not in

the black hexagonal cell.

## Proving Bijectivity

From the equation of the green line we obtain:

## Proving Bijectivity

From the equation of the green line we obtain:

Then, we substitute t with s + e to arrive at

which are violated when s = 1 or when s > 1 and e = 1.

## Proving Bijectivity

There are few more things to check in this step. See the manuscript (Lemma 5.3)/article (Lemma 7).

## Proving Bijectivity

Step 2: Check if for s = 1 or s > 1 and e = 1, the uncommon space of the hexagonal cells does not contain Eisenstein integers.

s = 1
$s = 1$
s > 1, t = s + 1
$s > 1, t = s + 1$

## Proving Bijectivity

The Square Grid

The Hexagonal Grid

## Neighborhood

The neighborhood of

\mathbf{p} \in \mathbb{Z}[\varkappa]
$\mathbf{p} \in \mathbb{Z}[\varkappa]$

r \in \mathbb{R}_+
$r \in \mathbb{R}_+$

):

\mathcal{N}_r(\mathbf{p}) = \big\{ \mathbf{p} + \mathbf{d} \in \mathbb{Z}[\varkappa] \mid |\mathbf{d} |^2 \leq r \big\}
$\mathcal{N}_r(\mathbf{p}) = \big\{ \mathbf{p} + \mathbf{d} \in \mathbb{Z}[\varkappa] \mid |\mathbf{d} |^2 \leq r \big\}$

## Neighborhood Motion Maps

r \in \mathbb{R}_+
$r \in \mathbb{R}_+$
U
$U$

and

\left| \begin{array}{lllll} \mathcal{G}^U_r & : & \mathcal{N}_r(0) & \to & \mathcal{N}_{r'}(0) \\ & & \mathbf{d} & \mapsto & U(\mathbf{p} + \mathbf{d}) - U(\mathbf{p}). \end{array} \right.
$\left| \begin{array}{lllll} \mathcal{G}^U_r & : & \mathcal{N}_r(0) & \to & \mathcal{N}_{r'}(0) \\ & & \mathbf{d} & \mapsto & U(\mathbf{p} + \mathbf{d}) - U(\mathbf{p}). \end{array} \right.$
\mathbf{p}
$\mathbf{p}$
\mathbf{p}
$\mathbf{p}$

The neighborhood motion map of

\mathbf{p} \in \mathbb{Z}[\varkappa]
$\mathbf{p} \in \mathbb{Z}[\varkappa]$

for a given rigid motion

## Neighborhood Motion Maps

r \in \mathbb{R}_+
$r \in \mathbb{R}_+$
U
$U$

and

\left| \begin{array}{lllll} \mathcal{G}^U_r & : & \mathcal{N}_r(0) & \to & \mathcal{N}_{r'}(0) \\ & & \mathbf{d} & \mapsto & U(\mathbf{p} + \mathbf{d}) - U(\mathbf{p}). \end{array} \right.
$\left| \begin{array}{lllll} \mathcal{G}^U_r & : & \mathcal{N}_r(0) & \to & \mathcal{N}_{r'}(0) \\ & & \mathbf{d} & \mapsto & U(\mathbf{p} + \mathbf{d}) - U(\mathbf{p}). \end{array} \right.$
\mathbf{p}
$\mathbf{p}$
\mathbf{p}
$\mathbf{p}$

The neighborhood motion map of

\mathbf{p} \in \mathbb{Z}[\varkappa]
$\mathbf{p} \in \mathbb{Z}[\varkappa]$

for a given rigid motion

## Neighborhood Motion Maps

The neighborhood motion map of

\mathbf{p} \in \mathbb{Z}[\varkappa]
$\mathbf{p} \in \mathbb{Z}[\varkappa]$

for a given rigid motion

r \in \mathbb{R}_+
$r \in \mathbb{R}_+$
U
$U$

and

\left| \begin{array}{lllll} \mathcal{G}^U_r & : & \mathcal{N}_r(0) & \to & \mathcal{N}_{r'}(0) \\ & & \mathbf{d} & \mapsto & U(\mathbf{p} + \mathbf{d}) - U(\mathbf{p}). \end{array} \right.
$\left| \begin{array}{lllll} \mathcal{G}^U_r & : & \mathcal{N}_r(0) & \to & \mathcal{N}_{r'}(0) \\ & & \mathbf{d} & \mapsto & U(\mathbf{p} + \mathbf{d}) - U(\mathbf{p}). \end{array} \right.$
\mathbf{p}
$\mathbf{p}$
\mathbf{p}
$\mathbf{p}$

## Remainder Map Step-by-Step

\mathbf{p}
$\mathbf{p}$

## Remainder Map step-by-step

\mathbf{p}
$\mathbf{p}$

## Remainder Map Step-by-Step

\mathcal{U}(\mathbf{p} + \mathbf{d}) =
$\mathcal{U}(\mathbf{p} + \mathbf{d}) =$
\mathbf{a} \cdot \mathbf{d}
$\mathbf{a} \cdot \mathbf{d}$
+\ \mathcal{U}(\mathbf{p})
$+\ \mathcal{U}(\mathbf{p})$
\mathcal{U}(\mathbf{p} + \mathbf{d})
$\mathcal{U}(\mathbf{p} + \mathbf{d})$

## Remainder Map Step-by-Step

\mathcal{U}(\mathbf{p} + \mathbf{d}) =
$\mathcal{U}(\mathbf{p} + \mathbf{d}) =$
\mathbf{a} \cdot \mathbf{d}
$\mathbf{a} \cdot \mathbf{d}$
+\ \mathcal{U}(\mathbf{p})
$+\ \mathcal{U}(\mathbf{p})$
\mathcal{U}(\mathbf{p} + \mathbf{d})
$\mathcal{U}(\mathbf{p} + \mathbf{d})$
U(\mathbf{p})
$U(\mathbf{p})$
\mathcal{U}(\mathbf{p})
$\mathcal{U}(\mathbf{p})$
\mathcal{U}(\mathbf{p}+\mathbf{d})
$\mathcal{U}(\mathbf{p}+\mathbf{d})$

## Remainder Map Step-by-Step

Without loss of generality,

U(\mathbf{p})
$U(\mathbf{p})$

is the origin, and then

\mathcal{U}(\mathbf{d}) = \mathbf{a} \cdot \mathbf{d} + \mathcal{U}(\mathbf{p}) - U(\mathbf{p})
$\mathcal{U}(\mathbf{d}) = \mathbf{a} \cdot \mathbf{d} + \mathcal{U}(\mathbf{p}) - U(\mathbf{p})$
\mathbf{a} \cdot \mathbf{d}
$\mathbf{a} \cdot \mathbf{d}$
\mathbf{d}
$\mathbf{d}$
\mathcal{U}(\mathbf{p}) - U(\mathbf{p})
$\mathcal{U}(\mathbf{p}) - U(\mathbf{p})$

## Remainder Map Step-by-Step

Without loss of generality,

U(\mathbf{p})
$U(\mathbf{p})$

is the origin, and then

\mathcal{U}(\mathbf{d}) = \mathbf{a} \cdot \mathbf{d} + \mathcal{U}(\mathbf{p}) - U(\mathbf{p})
$\mathcal{U}(\mathbf{d}) = \mathbf{a} \cdot \mathbf{d} + \mathcal{U}(\mathbf{p}) - U(\mathbf{p})$
\mathbf{a} \cdot \mathbf{d}
$\mathbf{a} \cdot \mathbf{d}$
\mathbf{d}
$\mathbf{d}$
\mathcal{U}(\mathbf{p}) - U(\mathbf{p})
$\mathcal{U}(\mathbf{p}) - U(\mathbf{p})$
U(\mathbf{p})
$U(\mathbf{p})$
\mathcal{U}(\mathbf{p})
$\mathcal{U}(\mathbf{p})$
\mathcal{U}(\mathbf{p}+\mathbf{d})
$\mathcal{U}(\mathbf{p}+\mathbf{d})$

## Remainder Map Step-by-Step

The remainder map defined as

\mathcal{F}(\mathbf{p}) = \mathcal{U}(\mathbf{p}) - U(\mathbf{p}) \in \mathcal{C}(\mathbf{0})
$\mathcal{F}(\mathbf{p}) = \mathcal{U}(\mathbf{p}) - U(\mathbf{p}) \in \mathcal{C}(\mathbf{0})$

where the range

\mathcal{C}(\mathbf{0})
$\mathcal{C}(\mathbf{0})$

is called the remainder range.

\mathcal{F}(\mathbf{p}) = \mathcal{U}(\mathbf{p}) - U(\mathbf{p})
$\mathcal{F}(\mathbf{p}) = \mathcal{U}(\mathbf{p}) - U(\mathbf{p})$

## Remainder Map Step-by-Step

The remainder map defined as

\mathcal{F}(\mathbf{p}) = \mathcal{U}(\mathbf{p}) - U(\mathbf{p}) \in \mathcal{C}(\mathbf{0})
$\mathcal{F}(\mathbf{p}) = \mathcal{U}(\mathbf{p}) - U(\mathbf{p}) \in \mathcal{C}(\mathbf{0})$

where the range

\mathcal{C}(\mathbf{0})
$\mathcal{C}(\mathbf{0})$

is called the remainder range.

\mathcal{F}(\mathbf{p}) = \mathcal{U}(\mathbf{p}) - U(\mathbf{p})
$\mathcal{F}(\mathbf{p}) = \mathcal{U}(\mathbf{p}) - U(\mathbf{p})$
U(\mathbf{p})
$U(\mathbf{p})$
\mathcal{U}(\mathbf{p})
$\mathcal{U}(\mathbf{p})$
\mathcal{U}(\mathbf{p}+\mathbf{d})
$\mathcal{U}(\mathbf{p}+\mathbf{d})$

## Remainder Map and Critical Rigid Motions

U(\mathbf{p})
$U(\mathbf{p})$
\mathcal{U}(\mathbf{p})
$\mathcal{U}(\mathbf{p})$
\mathcal{U}(\mathbf{p}+\mathbf{d})
$\mathcal{U}(\mathbf{p}+\mathbf{d})$

Such critical cases can be observed via the relative positions of         ,

\mathcal{F}(\mathbf{p})
$\mathcal{F}(\mathbf{p})$
\mathcal{H} - \mathbf{a} \cdot \mathbf{d}
$\mathcal{H} - \mathbf{a} \cdot \mathbf{d}$

That is to say

\mathcal{C}(\mathbf{0}) \cap (\mathcal{H} - \mathbf{a} \cdot \mathbf{d}).
$\mathcal{C}(\mathbf{0}) \cap (\mathcal{H} - \mathbf{a} \cdot \mathbf{d}).$

and are formulated as the translations                .

## Remainder Map and Critical Rigid Motions

\mathcal{H} - \mathbf{a} \cdot \mathbf{d}
$\mathcal{H} - \mathbf{a} \cdot \mathbf{d}$

## Critical Lines

\mathscr{H} = \bigcup \limits_{\mathbf{d} \in \mathcal{N}_r(0)} (\mathcal{H} - \mathbf{a}\cdot \mathbf{d}) \cap \mathcal{C}(0)
$\mathscr{H} = \bigcup \limits_{\mathbf{d} \in \mathcal{N}_r(0)} (\mathcal{H} - \mathbf{a}\cdot \mathbf{d}) \cap \mathcal{C}(0)$

## Critical Lines

\mathscr{H} = \bigcup \limits_{\mathbf{d} \in \mathcal{N}_r(0)} (\mathcal{H} - \mathbf{a}\cdot \mathbf{d}) \cap \mathcal{C}(0)
$\mathscr{H} = \bigcup \limits_{\mathbf{d} \in \mathcal{N}_r(0)} (\mathcal{H} - \mathbf{a}\cdot \mathbf{d}) \cap \mathcal{C}(0)$

## Critical Line Segments

\mathscr{H} = \bigcup \limits_{\mathbf{d} \in \mathcal{N}_r(0)} (\mathcal{H} - \mathbf{a}\cdot \mathbf{d}) \cap \mathcal{C}(0)
$\mathscr{H} = \bigcup \limits_{\mathbf{d} \in \mathcal{N}_r(0)} (\mathcal{H} - \mathbf{a}\cdot \mathbf{d}) \cap \mathcal{C}(0)$

## Frames

Each region bounded by the critical line segments is called a frame.

## Frames

Each region bounded by the critical line segments is called a frame.

## Frames

Each region bounded by the critical line segments is called a frame.

## Frames

For any

\mathbf{p}, \mathbf{q} \in \mathbb{Z}[\varkappa], \mathcal{G}^U_r(\mathbf{p}) = \mathcal{G}^U_r(\mathbf{q})
$\mathbf{p}, \mathbf{q} \in \mathbb{Z}[\varkappa], \mathcal{G}^U_r(\mathbf{p}) = \mathcal{G}^U_r(\mathbf{q})$

if and only if

\mathcal{F}(\mathbf{p})
$\mathcal{F}(\mathbf{p})$

and

\mathcal{F}(\mathbf{q})
$\mathcal{F}(\mathbf{q})$

the same frame.

Proposition

are in

## Frames

For any

\mathbf{p}, \mathbf{q} \in \mathbb{Z}[\varkappa], \mathcal{G}^U_r(\mathbf{p}) = \mathcal{G}^U_r(\mathbf{q})
$\mathbf{p}, \mathbf{q} \in \mathbb{Z}[\varkappa], \mathcal{G}^U_r(\mathbf{p}) = \mathcal{G}^U_r(\mathbf{q})$

if and only if

\mathcal{F}(\mathbf{p})
$\mathcal{F}(\mathbf{p})$

and

\mathcal{F}(\mathbf{q})
$\mathcal{F}(\mathbf{q})$

the same frame.

Proposition

are in

## Remainder Range Partitioning

At most 25 frames per partitioning.

## Remainder Range Partitioning

At most 81 frames per partitioning.

## Remainder Range Partitioning

At most 49 frames per partitioning.

## Loss of Information

\mathcal{F}(\mathbb{Z}[i])
$\mathcal{F}(\mathbb{Z}[i])$

## Pythagorean Rotations

If

\cos\theta
$\cos\theta$

and

\sin\theta
$\sin\theta$

are rational numbers, then the remainder map has

a finite number of images.

\mathcal{F}(\mathbb{Z}[i])
$\mathcal{F}(\mathbb{Z}[i])$

## Pythagorean Rotations

There exists a one-to-one relation between primitive Pythagorean

Lemma

triples:

(a,b,c) \in \mathbb{Z}^3, a < b < c \text{ and } \gcd(a,b,c) = 1
$(a,b,c) \in \mathbb{Z}^3, a < b < c \text{ and } \gcd(a,b,c) = 1$

and rational

rotations.

\mathcal{F}(\mathbb{Z}[i])
$\mathcal{F}(\mathbb{Z}[i])$

## Pythagorean Rotations

Such primitive Pythagorean triples can be generated from:

p, q \in \mathbb{Z}
$p, q \in \mathbb{Z}$

such that

0 < q < p
$0 < q < p$

and

p - q
$p - q$

being odd.

Finally,

a = p^2 - q^2, b = 2 p q
$a = p^2 - q^2, b = 2 p q$

and

c = p^2 + q^2.
$c = p^2 + q^2.$
\mathcal{F}(\mathbb{Z}[i])
$\mathcal{F}(\mathbb{Z}[i])$

## Pythagorean Rotations

The number of images of the remainder map is equal to

Corollary

c\text{.}
$c\text{.}$
\mathcal{F}(\mathbb{Z}[\omega])
$\mathcal{F}(\mathbb{Z}[\omega])$

For what kinds of parameters has the remainder map a finite number of images?

## Eisenstein Rational Rotations

If

\cos\theta = \frac{2a -b}{2 c}
$\cos\theta = \frac{2a -b}{2 c}$

and

\sin\theta = \frac{\sqrt{3}b}{2 c}
$\sin\theta = \frac{\sqrt{3}b}{2 c}$

where

(a,b,c)\in \mathbb{Z}^3, \gcd(a,b,c) = 1
$(a,b,c)\in \mathbb{Z}^3, \gcd(a,b,c) = 1$

and

0 < a < c < b,
$0 < a < c < b,$

Proposition

then the remainder map has a finite number

of images equal to

\mathcal{F}(\mathbb{Z}[\omega])
$\mathcal{F}(\mathbb{Z}[\omega])$
c\text{.}
$c\text{.}$

## Eisenstein Rational Rotations

\mathcal{F}(\mathbb{Z}[\omega])
$\mathcal{F}(\mathbb{Z}[\omega])$

is a primitive Eisenstein triple which can be

s, t \in \mathbb{Z}
$s, t \in \mathbb{Z}$

such that

0 < s < t
$0 < s < t$

and

t - s
$t - s$

not being

divisible by 3. Finally,

a = s^2 + 2 s t, b = t^2 + 2 s t
$a = s^2 + 2 s t, b = t^2 + 2 s t$

and

c = s^2 + t^2 + s t.
$c = s^2 + t^2 + s t.$
(a,b,c) \in \mathbb{Z}^3
$(a,b,c) \in \mathbb{Z}^3$

Such

generated from:

## Question 3: What are the possible translations which can be applied with a bijective digitized rotation?

f_\downarrow^0
$f_\downarrow^0$
c
$c$
s
$s$
r
$r$
w
$w$

## What are the possible translations which can follow a bijective digitized rotation?

\phi
$\phi$
\psi
$\psi$

## What are the possible translations which can follow a bijective digitized rotation?

c
$c$
s
$s$
r
$r$
w
$w$

A digitized rigid motion is bijective if and only if it is composed of a rotation by an angle defined by a twin Pythagorean triple (a, b, c) and a translation

\mathbf{t} = \mathbf{t}' + \mathbb{Z}\psi + \mathbb{Z}\phi,
$\mathbf{t} = \mathbf{t}' + \mathbb{Z}\psi + \mathbb{Z}\phi,$
\phi
$\phi$
\psi
$\psi$

where

\mathbf{t}' \in \left(-\frac{1}{2c}, \frac{1}{2c}\right) \oplus \left(-\frac{1}{2c}, \frac{1}{2c} \right) i.
$\mathbf{t}' \in \left(-\frac{1}{2c}, \frac{1}{2c}\right) \oplus \left(-\frac{1}{2c}, \frac{1}{2c} \right) i.$

Proposition

## Bijective Digitized Rigid Motions of Finite Subsets of The Square Grid

\mathbb{Z}[i]
$\mathbb{Z}[i]$

## Bijective Digitized Rigid Motions Are Not Dense

\mathcal{F}(S)
$\mathcal{F}(S)$

## Forward Algorithm

\mathcal{F}(S)
$\mathcal{F}(S)$

## Forward Algorithm

\text{Complexity: } \mathcal{O}(|S|)
$\text{Complexity: } \mathcal{O}(|S|)$

## Backward Algorithm - Step 1

\phi
$\phi$
\psi
$\psi$
(-1,3)
$(-1,3)$
(-1,3)
$(-1,3)$

## Backward Algorithm - Step 3

\text{Complexity: } \mathcal{O}(q) + \mathcal{O}(\log \min(a,b)) + \mathcal{O}(\sqrt{|S|})
$\text{Complexity: } \mathcal{O}(q) + \mathcal{O}(\log \min(a,b)) + \mathcal{O}(\sqrt{|S|})$

Step 1

Step 2

Step 3

## Forward

Depends on the size of the finite set

## Backward

Depends on the square root of the finite set size and the parameters of the rational rotations

## Backward vs. Forward Algorithm

When the size of the finite set is relatively low and the number of elements in the non-injective zones is relatively high, the forward algorithm is usually a better choice than the backward algorithm and vice versa.

# Finding Local Bijectivity Angle Interval

## Finding Local Bijectivity Angle Interval

\mathcal{F}(S)
$\mathcal{F}(S)$

## Finding Local Bijectivity Angle Interval

U(S)
$U(S)$

What are the intervals of the parameters around the initial ones such that the corresponding transformations remain bijective when restricted to the set?

## Finding Local Bijectivity Angle Interval

\cos \alpha = \frac{p_1 \lambda + p_2 \left(k + \frac{1}{2} \right)}{p_1^2 + p_2^2}
$\cos \alpha = \frac{p_1 \lambda + p_2 \left(k + \frac{1}{2} \right)}{p_1^2 + p_2^2}$
\lambda = \sqrt{p_1^2 + p_2^2 - \left(k + \frac{1}{2} \right)^2}
$\lambda = \sqrt{p_1^2 + p_2^2 - \left(k + \frac{1}{2} \right)^2}$

## Finding Local Bijectivity Angle Interval

\cos \alpha = \frac{p_1 \lambda + p_2 \left(k - t_2 + \frac{1}{2} \right)}{p_1^2 + p_2^2}
$\cos \alpha = \frac{p_1 \lambda + p_2 \left(k - t_2 + \frac{1}{2} \right)}{p_1^2 + p_2^2}$
\lambda = \sqrt{p_1^2 + p_2^2 - \left(k - t_2 + \frac{1}{2} \right)^2}
$\lambda = \sqrt{p_1^2 + p_2^2 - \left(k - t_2 + \frac{1}{2} \right)^2}$

# 3D Discrete Spaces

## The Cubic Grid

The cubic lattice is then:

## Digitization Model

A digitization cell of

\mathbf{x}
$\mathbf{x}$

denoted by

\mathcal{C}(\mathbf{x}).
$\mathcal{C}(\mathbf{x}).$

## Digitization Model

The digitization operator is defined as

\mathcal{D}: \mathbb{R}^3 \rightarrow \mathbb{Z}^3
$\mathcal{D}: \mathbb{R}^3 \rightarrow \mathbb{Z}^3$

such that

\forall \mathbf{x} \in \mathbb{R}^3, \exists! \mathcal{D}(\mathbf{x}) \in \mathbb{Z}^3
$\forall \mathbf{x} \in \mathbb{R}^3, \exists! \mathcal{D}(\mathbf{x}) \in \mathbb{Z}^3$
\mathbf{x} \in \mathcal{C}(\mathcal{D}(\mathbf{x})).
$\mathbf{x} \in \mathcal{C}(\mathcal{D}(\mathbf{x})).$

and

## Quick Introduction to 3D Rigid Motions

\left| \begin{array}{lllll} \mathcal{U} & : & \mathbb{R}^3 & \to & \mathbb{R}^3 \\ & & \mathbf{x} & \mapsto & \mathbf{R} \mathbf{x} + \mathbf{t} \end{array} \right.
$\left| \begin{array}{lllll} \mathcal{U} & : & \mathbb{R}^3 & \to & \mathbb{R}^3 \\ & & \mathbf{x} & \mapsto & \mathbf{R} \mathbf{x} + \mathbf{t} \end{array} \right.$

## Rigid Motions on

\mathbb{R}^3
$\mathbb{R}^3$

## Properties

• Do preserve distances

• Bijective

\mathbf{R}
$\mathbf{R}$

- rotation matrix

\mathbf{t}
$\mathbf{t}$

- translation vector

U = \mathcal{D}\ \circ \mathcal{U}_{|\mathbb{Z}^3}
$U = \mathcal{D}\ \circ \mathcal{U}_{|\mathbb{Z}^3}$

## Properties

• Non-injective
• Non-surjective
• Do not preserve distances
\mathcal{U}(\mathbb{Z}^3)
$\mathcal{U}(\mathbb{Z}^3)$

## Contributions in Short

• An algorithm to characterize bijective digitized rotations

• An algorithm to compute all possible images of a finite digital set under digitized rigid motions

## Spatial Rotations and Quaternions

\mathbb{H} = \{a + b i + c j + d k | a,b,c,d \in \mathbb{R} \}
$\mathbb{H} = \{a + b i + c j + d k | a,b,c,d \in \mathbb{R} \}$

with

i^2 = j^2 = k^2 = i j k = {-1}
$i^2 = j^2 = k^2 = i j k = {-1}$

Properties:

• Hamilton product is not commutative

• Any rotation can be written as
\mathcal{U} : \mathbf{x} \mapsto q \mathbf{x} q^{-1}
$\mathcal{U} : \mathbf{x} \mapsto q \mathbf{x} q^{-1}$

where

q \in \mathbb{H}, \mathbf{x} \in \mathbb{R}^3
$q \in \mathbb{H}, \mathbf{x} \in \mathbb{R}^3$
• We can derive a rotation matrix

where

K = a^2 + b^2 + c^2 + d^2
$K = a^2 + b^2 + c^2 + d^2$

The figure source: http://www.3dgep.com/understanding-quaternions/

## Remainders

3D digitized rotation is then
bijective when

\forall \mathbf{y} \in \mathbb{Z}^3\ \exists! \mathbf{x} \in \mathbb{Z}^3, S_q(\mathbf{x},\mathbf{y}) \in \mathcal{C}(\mathbf{0})
$\forall \mathbf{y} \in \mathbb{Z}^3\ \exists! \mathbf{x} \in \mathbb{Z}^3, S_q(\mathbf{x},\mathbf{y}) \in \mathcal{C}(\mathbf{0})$

## Remainders

Equivalently and more computationally friendly (we will see later)

such that

S_{q}(\mathbb{Z}^3,\mathbb{Z}^3) \cap ((\mathcal{C}(\mathbf{0}) \cup q \mathcal{C}(\mathbf{0}) q^{-1}) \setminus (\mathcal{C}(\mathbf{0}) \cap q \mathcal{C}(\mathbf{0}) q^{-1})) = \varnothing
$S_{q}(\mathbb{Z}^3,\mathbb{Z}^3) \cap ((\mathcal{C}(\mathbf{0}) \cup q \mathcal{C}(\mathbf{0}) q^{-1}) \setminus (\mathcal{C}(\mathbf{0}) \cap q \mathcal{C}(\mathbf{0}) q^{-1})) = \varnothing$

## Group Spanned by Values of

S_q
$S_q$

Proposition

If all the generators of

\mathcal{G}_q
$\mathcal{G}_q$

have only rational terms, then there exist vectors

which are the

minimal generators of

\mathcal{G}_q.
$\mathcal{G}_q.$

## Group Spanned by Values of

S_q
$S_q$

Lemma

If

\mathcal{G}_q
$\mathcal{G}_q$

is dense, then the

corresponding 3D digitized rotation is not bijective.

## Group Spanned by Values of

S_q
$S_q$

Conjecture

If

\mathcal{G}_q
$\mathcal{G}_q$

has a dense factor,

the corresponding digitized rotation is not bijective.

## Lipschitz Quaternions and Rational Rotations

Proposition

There is a two-to-one correspondence between the set of Lipschitz quaternions

\mathbb{L} = \{ a+ b i + c j + d k | a,b,c,d \in \mathbb{Z}\}
$\mathbb{L} = \{ a+ b i + c j + d k | a,b,c,d \in \mathbb{Z}\}$

such that the

\gcd(a,b,c,d) = 1,
$\gcd(a,b,c,d) = 1,$

and the set of rational rotations.

where

K = a^2 + b^2 + c^2 + d^2.
$K = a^2 + b^2 + c^2 + d^2.$
\mathbf{R} =
$\mathbf{R} =$

## Turning into Integers

Since we have

q \cdot \mathbf{x} \cdot q^{-1}
$q \cdot \mathbf{x} \cdot q^{-1}$

where

q^{-1} = \frac{\bar{q}}{|q|^2}
$q^{-1} = \frac{\bar{q}}{|q|^2}$

and

\mathcal{G}_q
$\mathcal{G}_q$

is rational, we can

multiply by

|q|^2
$|q|^2$

and obtain an integer lattice.

## Reducing the Left Factor

We are allowed to divide on the left by q while keeping integer valued functions.

## Characterization Algorithm Step 1

To check if

\mathbf{w} \in \mathbb{Z}^4
$\mathbf{w} \in \mathbb{Z}^4$

belongs to values

of

S'_{q},
$S'_{q},$

first verify whether

a w_1 - b w_2 - c w_3 - d w_4 = 0
$a w_1 - b w_2 - c w_3 - d w_4 = 0$

## Characterization Algorithm Step 2

Then we solve the following Diophantine system:

\mathbf{Az} = \mathbf{w}
$\mathbf{Az} = \mathbf{w}$

where

\mathbf{z}^t = (\mathbf{x}, \mathbf{y}) \in \mathbb{Z}^6
$\mathbf{z}^t = (\mathbf{x}, \mathbf{y}) \in \mathbb{Z}^6$

and

The complexity of reducing

\mathbf{A} \text{ is } \mathcal{O}(\log^2N(\mathbf{A})).
$\mathbf{A} \text{ is } \mathcal{O}(\log^2N(\mathbf{A})).$

The final complexity is

\mathcal{O}(|q|^3 + \log^2N(\mathbf{A})).
$\mathcal{O}(|q|^3 + \log^2N(\mathbf{A})).$

## Conclusion and Perspectives

• A general framework to study 2D digitized rigid motions
• Comparison of the digitized rigid motions defined on square and hexagonal lattices
• Characterization of bijective digitized:
• rigid motions on the square grid
• rotations on the hexagonal grid
• 3D rotations on the cubic grid
• Algorithms to characterize if a digitized rigid motion is bijective when restricted to a finite set
• An algorithm to compute, under 3D digitized rigid motions, all possible images of a finite digital set

## Conclusion and Perspectives

• Analytical characterization of 3D bijective rigid motions
• Extension of the study to the triangular grid
• Identification of minimal 3D sets that break 6-connectivity under digitized rigid motions

By Kacper Pluta

# Rigid Motions on Discrete Spaces

Kacper Pluta's PhD defense presentation.

• 446