Graphene triangulenes embedded in hexagonal

boron nitride 

Eötvös Loránd University

Dániel Pozsár

László Oroszlány, Viktor Ivády

The Team

  • László Oroszlány, Zoltán Tajkov, János Koltai, Dániel Pozsár, Andor Kormányos, András Balogh, Tamás Véber, Marcell Sipos
     
  • Jaime Ferrer, Amador Garcia Fuente, Gabriel Martinez-Carracedo, Aurelio Hierro Rodriguez, Balázs Nagyfalusi, Rosa Eulalia González Ferreras
     
  • Felix Büttner, Kai Litzius, Steffen Wittrock
     
  • Efren Navarro-Moratalla, Marta Galbiati, Jose Joaquin Perez Grau
     
  • László Szunyogh, László Udvardi, Bendegúz Nyári, Anjali Jyothi Bhasu 

Antiferromagnetic spin-1 chains

  • Haldane gap
  • BLBQ nearest neighbor model

  • Measurement based quantum computing
\hat{H}_{BLBQ} = J \sum_{i=1}^{N-1} \left[ \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_{i+1} + \beta \left( \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_{i+1} \right)^2 \right]

Martínez-Carracedo, Gabriel, et al. "Electrically driven singlet-triplet transition in triangulene spin-1 chains." Physical Review B 107.3 (2023): 035432.

Mishra, Shantanu, et al. "Observation of fractional edge excitations in nanographene spin chains." Nature 598.7880 (2021): 287-292.

Determination of ground state spin in triangulenes

Angew. Chem. Int. Ed. 10.1002/anie.23783

  • Lieb's theorem for bipartite lattices
  • Ovchinnikov's rule


S = \frac{1}{2} \vert A - B \rvert

Embedding in hexagonal boron nitride

Park, Hyoju, et al. "Atomically precise control of carbon insertion into hBN monolayer point vacancies using a focused electron beam guide." Small 17.23 (2021): 2100693.

Dai, Chunhui, et al. "Evolution of nanopores in hexagonal boron nitride." Communications chemistry 6.1 (2023): 108.

DFT perturbation theory

H_{ii}^{\sigma} = \frac{H_{ii}^{\uparrow} - H_{ii}^{\downarrow}}{2}
J_{nm} = \frac{2}{\pi} \int_{-\infty}^{\varepsilon_F} d\varepsilon \text{Im} \, \text{Tr}_{L} \left[ H_{nn}^{\sigma} G_{nm}^{\dagger}(\varepsilon) H_{mm}^{\sigma} G_{mn}^{\dagger}(\varepsilon) \right]
\delta E_{nm}^{(2)} = J_{nm} \left[ 1 + 2\beta_{nm} \left( \boldsymbol{S}_n \cdot \boldsymbol{S}_m \right) \right] \delta \boldsymbol{S}_n \cdot \delta \boldsymbol{S}_m
\hat{H}_{BLBQ} = J \sum_{i=1}^{N-1} \left[ \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_{i+1} + \beta \left( \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_{i+1} \right)^2 \right]

Oroszlány, László, et al. "Exchange interactions from a nonorthogonal basis set: From bulk ferromagnets to the magnetism in low-dimensional graphene systems." Physical Review B 99.22 (2019): 224412.

Perturbation of classical Hamiltonian

Energy of infinitesimal rotations from Kohn-Sham Hamiltonian

\delta E_{nm}^{(2)} = D_{nm}^{(2)} \delta\mathbf{S}_n \cdot \delta\mathbf{S}_m

Collinear DFT:

LKAG and magnetic force theorem:

Result of the embedding process

Result of the embedding process

Modelling infinite chains

Experiment Triangulene in hBN Triangulene in vacuum
18 meV 20.22 meV 19.75 meV
0.09 0.01 0.05
J
\beta

Mishra, Shantanu, et al. "Observation of fractional edge excitations in nanographene spin chains." Nature 598.7880 (2021): 287-292.

Relativistic magnetic interactions

  • Very early release !!
    • https://github.com/danielpozsar/grogu
  • Single DFT calculation
  • Pair creation is extremely cheap
  • parallel BZ integral with MPI or CUDA
  • Generalised Heisenberg model
H(\{\mathbf{S}_i\}) = \frac{1}{2} \sum_{i \neq j} \mathbf{S}_i \mathcal{J}_{ij} \mathbf{S}_j + \sum_i \mathbf{S}_i K_i \mathbf{S}_i

UNDER 1 Hour on 8 GPUs

Copy of DPG presentation

By László Oroszlány

Copy of DPG presentation

  • 136