Competition of trivial and topological phases in graphene based hybrid systems

László Oroszlány

Department of Physics of Complex Systems, Eötvös Loránd University

and MTA-BME Lendület Topology and Correlation Research Group

 

Duncan and Kekulé

Duncan, Charlie, Gene  and Kekulé

Strained relationship

A colourful mess!

Graphene is ...

... a good template!

A. K. Geim, I. V. Grigorieva Nature  499, 419 (2013)

BiTeX: gigant SOC

Ishizaka et al. Nature Materials 10, 521 (2011)

BiTeX monolayer

Fülöp et al. 2D Mater. 5, 031013 (2018)

BiTeX/graphene heterostructures

BiTeI sandwich: Kou et al. ACS Nano, 8 10448 (2014)

trivial

topological

Z. Tajkov el al. Nanoscale 11, 12704 (2019)

Mechanical distortions

in graphene

 Weiss et al. Advanced Materials, 24 5782(2012)

Pressure→I, inplane strain →TI !?!

Z. Tajkov el al. Appl. Sci.  9, 4330 (2019)

BiTeBr

BiTeCl

BiTeCl

Effective model and fit

t_1+i\vec{m_1}\cdot\vec{\sigma}
t_2+i\vec{m_2}\cdot\vec{\sigma}
t_3+i\vec{m_3}\cdot\vec{\sigma}
im_z\sigma_z
=\mathrm{e}^{-\beta\left(l/l_0-1\right)}

TB model predicts phase transition well!

topological

trivial

\begin{array}{c} \hat{H}=v\left( \hat{\boldsymbol{p}}\cdot\boldsymbol{\sigma}\otimes\tau_{z} -\boldsymbol{A}\cdot\boldsymbol{\sigma}\otimes\tau_{0} \right)\\ +\Delta_{\text{Kek}}\sigma_0\otimes\tau_x\\ +\Delta_{\text{KM}}\sigma_z\otimes\tau_0 \end{array}
\boldsymbol{A}=\underbrace{\frac{\beta}{2a_{0}}\varepsilon\left(1+\rho\right)}\left(\begin{array}{c} \cos2\vartheta\\ -\sin2\vartheta \end{array}\right)
|\Xi|=\sqrt{\Delta^2_{\text{Kek}}-\Delta^2_{\text{KM}}}
\Xi/v

Strain can close the gap at \(k=0\) if

Effective model

Gamayun et al. New J. Phys. 20, 023016 (2018)

Andrade el al. Phys. Rev. B 99, 035411 (2019)

Strain kills Kekulé but KM gap is resilient!

 

Hidden order of adatoms via RKKY

V.V.Cheianov et al. Solid State Commun. 149, 1499 (2009)

"Ferro"

"Para"

\hat{H}=v\hat{\boldsymbol{p}}\cdot\boldsymbol{\sigma}\otimes\tau_{z}
V^{\mathrm{RKKY}}_{ij}=\int_{-\infty}^{\infty}\text{d}\omega\text{Tr}\left[\hat{V}_{i}\hat{G}(\omega)\hat{V}_{j}\hat{G}(-\omega)\right]
\hat{V}_{i}=\delta(\boldsymbol{r}-\boldsymbol{r}_i)\left( \Delta_{\text{Kek}}\sigma_{0}\otimes\boldsymbol{u}_{i}\cdot\boldsymbol{\tau}+ \Delta_{\text{KM}}\sigma_{z}\otimes\tau_{0} \right )
V^{\mathrm{RKKY}}_{ij}=-\frac{\Delta_{\text{Kek}}^{2}\boldsymbol{u}_{i}\cdot\boldsymbol{u}_{j}+\Delta_{\text{KM}}^{2}}{8\pi r_{ij}^{3}v}
\boldsymbol{u}_{i}=\left( \begin{array}{c} \cos\left(\frac{2\pi}{3}\nu_{i}\right) \\ \sin\left(\frac{2\pi}{3}\nu_{i}\right) \end{array}\right),\,\nu_i\in[-1,0,1]

Large adatom \( \Rightarrow \) strong SOC

Disorder?

KPM!

Weiße et al. Rev. Mod. Phys. 78, 275 (2006)

 
m =\frac{\sqrt{3}}{3}|t' -t|

"Ferro"

"Para"

T

I to TI transition at finite temperature!

C. W. Groth, et al. Phys. Rev. Lett. 103, 196805 (2009)

The Team

Zoltán Tajkov

Dániel Nagy

János Koltai

József Cserti

Thanks!

Z. Tajkov el al. Nanoscale 11, 12704 (2019)

Z. Tajkov el al. Appl. Sci.  9, 4330 (2019)

Competition of trivial and topological phases in graphene based hybrid systems

By László Oroszlány

Competition of trivial and topological phases in graphene based hybrid systems

  • 797