NTK evolution

First experiment

Architecture: wide resnet

Dataset: CIFAR10


archive 4% error (close to SOTA)

with 2 classes it archive 2.8% error



  • batch normalization
  • weight decay
  • learning rate scheduler
  • cross entropy (linear hinge instead)

it archive 6% error

  • binary classification (automobile, cat, dog, horse and truck vs the rest)

  • 6k images

  • no batch normalization

  • no weight decay

  • no learning rate scheduler

  • linear hinge instead of cross entropy

it archive 20.7% error and 0 train loss

train with the frozen kernel (same dynamics)


Kernel inflation

rem.: inflation of the kernel justifies learning rate decay

\(df = \partial_0 f dw + \partial_0^2 f dw^2 + \partial_0^3 f dw^3 + \mathcal{O}(dw^4)\)

\(1 \sim \alpha df \sim \alpha dw \Rightarrow dw \sim \alpha^{-1}\)

\(\Theta \sim (\partial f)^2 \sim (\partial_0 f + \partial_0^2 f dw + \partial_0^3 f dw^2 + \mathcal{O}(dw^3))^2 \sim \Theta_0 + \partial_0 f \partial_0^2 f dw + (\partial_0^2 f dw)^2 + \partial_0 f \partial_0^3 f dw^2 + \mathcal{O}(dw^3)\)

\(d\Theta \sim \alpha^{-2} \)

Training \(\alpha (f - f_0)\) allow to control the evolution of the kernel \((\partial f)^2\)

In the limit of small evolution of the parameters

\(\alpha \to \infty\) gives the initial kernel

Architecture: Fully connected

Dataset: 10 PCA of MNIST

\(\alpha (f - f_0)\)

too large LR


alpha / sqrt(h)

ensemble average



By Mario Geiger


  • 622