Deep Learning Code Fragments for Code Clone Detection

Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk

Code Clones

A code fragment is a contiguous segment of source code. Code clones are two or more fragments that are similar with respect to a clone type.

Type I Clones

Identical up to variations in comments, whitespace, or layout [Roy'07]


if (a >= b) {
    c = d + b; // Comment1
    d = d + 1;}
else
    c = d - a; //Comment2
if (a>=b) {
    // Comment1'
    c=d+b;
    d=d+1;}
else  // Comment2'
    c=d-a;
if (a>=b)
    { // Comment1''
    c=d+b;
    d=d+1;
    }
else  // Comment2''
    c=d-a;

Type II Clones

Identical up to variations in names and values, comments, etc. [Roy'07]

if (a >= b) {
    c = d + b; // Comment1
    d = d + 1;}
else
    c = d - a; //Comment2
if (m >= n)
    { // Comment1'
    y = x + n;
    x = x + 5; //Comment3
    }
else
    y = x - m; //Comment2'

A parameterized clone for this fragment is

Type III Clones

Modifications include statement(s) changed, added, or deleted [Roy'07]

public int getSoLinger() throws SocketException {
    Object o = impl.getOption(SocketOptions.SO_LINGER);
    if (o instanceof Integer) {
        return((Integer) o).intValue();
    }
    else return -1;
    }
public synchronized int getSoTimeout() // This statement is changed
                         throws SocketException {
    Object o = impl.getOption(SocketOptions.SO_TIMEOUT);
    if (o instanceof Integer) {
        return((Integer) o).intValue();
    }
    else return -0;
    }

Type IV Clones

Syntactically dissimilar fragments with similar functionality [Roy'07]

int i, j=1;
  for (i=1; i<=VALUE; i++)
       j=j*i;
int factorial(int n) {
 if (n == 0) return 1 ;
 else        return n * factorial(n-1) ;
}

Now consider a recursive function that calculates the factorial

Code Clone Detection

  • An important problem for software maintenance and evolution
    • Detecting library candidates
    • Aiding program comprehension
    • Detecting malicious software
    • Detecting plagiarism or copyright infringement
    • Detecting context-based inconsistencies
    • Searching for refactoring opportunities
  • Different techniques for detecting code clones

Code Clone Detection Techniques

Techniques can be classified by their source code representation

  • Text. Apply slight transformations; compare sequences of text

 

  • Token. Lexically analyze the code; compare subsequences of tokens

 

  • Metrics. Gather different metrics for fragments; compare them
  • Tree. Measure similarity of subtrees in syntactical representations

 

  • Graph. Consider the semantic information of the source code

 

Motivation

  • Many approaches consider either structure or identifiers but none of the existing techniques model both sources of information
public int getSoLinger() throws SocketException {
    Object o = impl.getOption(SocketOptions.SO_LINGER);
    if (o instanceof Integer) {
        return((Integer) o).intValue();
    }
    else return -1;
  • They depend on generic, handcrafted features to represent code
    • Frequency of keywords
    • Indentation pattern
    • Length of source code line
    • Number of shared/different AST nodes
    • q-Level atomic tree patterns in parse trees
    • Frequency of semantic node types in PDGs
    • Geometry characteristics of CFGs

Our new set of techniques fuse and use

Learning-based Paradigm

  • Learn. Induce compositional representations of code; compare

 

  • Distinguished from token-based techniques; maps terms to continuous-valued vectors and uses context

 

  • Distinguished from tree-based techniques; operates on identifiers and learns discriminating features

Why deep learning?

  • Synchronizes the source code representation with the manner in which the code is conceptually organized
    • Deep learning algorithms are compositional
    • Source code is compositional

 

  • Three apparent advantages over Latent Semantic Analysis
    • Autoencoders are nonlinear dimensionality reducers
    • Operates with several nonlinear transformations
    • Recursion considers the order of terms

 

  • Can recognize similarities among terms

 

Learning-based Code Clone Detection

Our approach couples deep learners to front end compiler stages

ast2bin

ASTs can have any number of levels comprising nodes with arbitrary degree. ast2bin fixes the size of the input, and recursion models different levels.

Case I

Case II

Case II

Use a grammar to handle nodes with degree greater than two

Case I

  1. TypeDeclaration
  2. MethodDeclaration
  3. OtherType
  4. ExpressionStatement
  5. QualifiedName
  6. SimpleType
  7. SimpleName
  8. ParenthesizedExpression
  9. Block
  10. ArtificialType

Establish a precedence to handle nodes with degree one

Recurrent Neural Networks

Effectively model sequences of terms in a source code corpus

Deep Learning Code at the Lexical Level

We use a recurrent neural network to map terms to embeddings

y(i)=g(\gamma f({\color{red}\alpha} t(i)+\beta z(i-1)))
y(i)=g(γf(αt(i)+βz(i1)))y(i)=g(\gamma f({\color{red}\alpha} t(i)+\beta z(i-1)))

What we would like to have is not only embeddings for terms but also embeddings for fragments

\color{white}{y(i)=g(\gamma f({\alpha}} t(i)\color{white}{+\beta z(i-1)))}
y(i)=g(γf(αt(i)+βz(i1)))\color{white}{y(i)=g(\gamma f({\alpha}} t(i)\color{white}{+\beta z(i-1)))}
\color{white}{y(i)=g(\gamma f(}{\color{red}\alpha} t(i)\color{white}{+\beta z(i-1)))}
y(i)=g(γf(αt(i)+βz(i1)))\color{white}{y(i)=g(\gamma f(}{\color{red}\alpha} t(i)\color{white}{+\beta z(i-1)))}
\color{white}{y(i)=g(\gamma f(}{\color{red}\alpha} t(i)\color{white}{+\beta} z(i-1)\color{white}{))}
y(i)=g(γf(αt(i)+βz(i1)))\color{white}{y(i)=g(\gamma f(}{\color{red}\alpha} t(i)\color{white}{+\beta} z(i-1)\color{white}{))}
\color{white}{y(i)=g(\gamma f(}{\color{red}\alpha} t(i)\color{white}{+}\beta z(i-1)\color{white}{))}
y(i)=g(γf(αt(i)+βz(i1)))\color{white}{y(i)=g(\gamma f(}{\color{red}\alpha} t(i)\color{white}{+}\beta z(i-1)\color{white}{))}
\color{white}{y(i)=g(\gamma f(}{\color{red}\alpha} t(i)+\beta z(i-1)\color{white}{))}
y(i)=g(γf(αt(i)+βz(i1)))\color{white}{y(i)=g(\gamma f(}{\color{red}\alpha} t(i)+\beta z(i-1)\color{white}{))}
\color{white}{y(i)=g(\gamma} f({\color{red}\alpha} t(i)+\beta z(i-1))\color{white}{)}
y(i)=g(γf(αt(i)+βz(i1)))\color{white}{y(i)=g(\gamma} f({\color{red}\alpha} t(i)+\beta z(i-1))\color{white}{)}
\color{white}{y(i)=g(}\gamma f({\color{red}\alpha} t(i)+\beta z(i-1))\color{white}{)}
y(i)=g(γf(αt(i)+βz(i1)))\color{white}{y(i)=g(}\gamma f({\color{red}\alpha} t(i)+\beta z(i-1))\color{white}{)}
\color{white}{y(i)=}g(\gamma f({\color{red}\alpha} t(i)+\beta z(i-1)))
y(i)=g(γf(αt(i)+βz(i1)))\color{white}{y(i)=}g(\gamma f({\color{red}\alpha} t(i)+\beta z(i-1)))
y(i)=g(\gamma f({\color{red}\alpha} t(i)+\beta z(i-1)))
y(i)=g(γf(αt(i)+βz(i1)))y(i)=g(\gamma f({\color{red}\alpha} t(i)+\beta z(i-1)))

Recursive Autoencoders

Generalize recurrent neural networks by modeling structures

Deep Learning Code at the Syntax Level

We use a recursive autoencoder to encode sequences of embeddings

y=[\hat{x_{\ell}};\hat{x_{r}}]=g([\delta_{\ell};\delta_r] f([\color{red}{\varepsilon_{\ell}},\color{red}{\varepsilon_{r}}] [x_{\ell};x_r]))
y=[x^;xr^]=g([δ;δr]f([ε,εr][x;xr]))y=[\hat{x_{\ell}};\hat{x_{r}}]=g([\delta_{\ell};\delta_r] f([\color{red}{\varepsilon_{\ell}},\color{red}{\varepsilon_{r}}] [x_{\ell};x_r]))

AST-based encoding

Greedy encoding

y=[\hat{x_{\ell}};\hat{x_{r}}]=g([\delta_{\ell};\delta_r] f([\color{red}{\varepsilon_{\ell}},\color{red}{\varepsilon_{r}}] [x_{\ell};x_r]))
y=[x^;xr^]=g([δ;δr]f([ε,εr][x;xr]))y=[\hat{x_{\ell}};\hat{x_{r}}]=g([\delta_{\ell};\delta_r] f([\color{red}{\varepsilon_{\ell}},\color{red}{\varepsilon_{r}}] [x_{\ell};x_r]))
\color{white}{y=[\hat{x_{\ell}};\hat{x_{r}}]=g([\delta_{\ell};\delta_r] f([{\varepsilon_{\ell}},{\varepsilon_{r}}]} [x_{\ell};x_r]\color{white}{))}
y=[x^;xr^]=g([δ;δr]f([ε,εr][x;xr]))\color{white}{y=[\hat{x_{\ell}};\hat{x_{r}}]=g([\delta_{\ell};\delta_r] f([{\varepsilon_{\ell}},{\varepsilon_{r}}]} [x_{\ell};x_r]\color{white}{))}
\color{white}{y=[\hat{x_{\ell}};\hat{x_{r}}]=g([\delta_{\ell};\delta_r] f(}[\color{red}{\varepsilon_{\ell}},\color{red}{\varepsilon_{r}}] [x_{\ell};x_r]\color{white}{))}
y=[x^;xr^]=g([δ;δr]f([ε,εr][x;xr]))\color{white}{y=[\hat{x_{\ell}};\hat{x_{r}}]=g([\delta_{\ell};\delta_r] f(}[\color{red}{\varepsilon_{\ell}},\color{red}{\varepsilon_{r}}] [x_{\ell};x_r]\color{white}{))}
\color{white}{y=[\hat{x_{\ell}};\hat{x_{r}}]=g([\delta_{\ell};\delta_r]} f([\color{red}{\varepsilon_{\ell}},\color{red}{\varepsilon_{r}}] [x_{\ell};x_r])\color{white}{)}
y=[x^;xr^]=g([δ;δr]f([ε,εr][x;xr]))\color{white}{y=[\hat{x_{\ell}};\hat{x_{r}}]=g([\delta_{\ell};\delta_r]} f([\color{red}{\varepsilon_{\ell}},\color{red}{\varepsilon_{r}}] [x_{\ell};x_r])\color{white}{)}
\color{white}{y=[\hat{x_{\ell}};\hat{x_{r}}]=g(}[\delta_{\ell};\delta_r] f([\color{red}{\varepsilon_{\ell}},\color{red}{\varepsilon_{r}}] [x_{\ell};x_r])\color{white}{)}
y=[x^;xr^]=g([δ;δr]f([ε,εr][x;xr]))\color{white}{y=[\hat{x_{\ell}};\hat{x_{r}}]=g(}[\delta_{\ell};\delta_r] f([\color{red}{\varepsilon_{\ell}},\color{red}{\varepsilon_{r}}] [x_{\ell};x_r])\color{white}{)}
\color{white}{y=[\hat{x_{\ell}};\hat{x_{r}}]=}g([\delta_{\ell};\delta_r] f([\color{red}{\varepsilon_{\ell}},\color{red}{\varepsilon_{r}}] [x_{\ell};x_r]))
y=[x^;xr^]=g([δ;δr]f([ε,εr][x;xr]))\color{white}{y=[\hat{x_{\ell}};\hat{x_{r}}]=}g([\delta_{\ell};\delta_r] f([\color{red}{\varepsilon_{\ell}},\color{red}{\varepsilon_{r}}] [x_{\ell};x_r]))
\color{white}{y=}[\hat{x_{\ell}};\hat{x_{r}}]=g([\delta_{\ell};\delta_r] f([\color{red}{\varepsilon_{\ell}},\color{red}{\varepsilon_{r}}] [x_{\ell};x_r]))
y=[x^;xr^]=g([δ;δr]f([ε,εr][x;xr]))\color{white}{y=}[\hat{x_{\ell}};\hat{x_{r}}]=g([\delta_{\ell};\delta_r] f([\color{red}{\varepsilon_{\ell}},\color{red}{\varepsilon_{r}}] [x_{\ell};x_r]))

Empirical Validation

  • Research Questions
    1. Are our representations suitable for detecting fragments that are similar with respect to a clone type?
    2. Is there evidence that our learning-based approach is capable of recognizing clones that are undetected or suboptimally reported by a structure-oriented technique?
  • Estimated precision at different levels of granularity to answer RQ1; synthesized qualitative data across two techniques for RQ2
  • Data Collection Procedure
    • ANTLR, RNNLM Toolkit, Eclipse JDT
    • Generated both file- and method-level corpora
  • Analysis Procedure
    • Two Ph.D. students evaluated file- and method-level samples
    • We adapted a taxonomy of editing scenarios [Roy'09]
Statistics
System Files LOC Tokens |V|
ANTLR 4 1,514 104,225 1,701,807 15,826
Apache Ant 1.9.6 1,218 136,352 1,888,424 16,029
ArgoUML 0.34 1,908 177,493 1,172,058 17,205
CAROL 2.0.5 1,184 112,022 1,180,947 12,210
dnsjava 2.0.0 1,196 124,660 1,169,219 13,012
Hibernate 2 1,555 151,499 1,365,256 15,850
JDK 1.4.2 4,129 562,120 3,512,807 45,107
JHotDraw 6 1,984 158,130 1,377,652 14,803

Subject Systems

Statistics
System Files LOC Tokens |V|
ANTLR 4 1,514 104,225 1,701,807 15,826
Apache Ant 1.9.6 1,218 136,352 1,888,424 16,029
ArgoUML 0.34 1,908 177,493 1,172,058 17,205
CAROL 2.0.5 1,184 112,022 1,180,947 12,210
dnsjava 2.0.0 1,196 124,660 1,169,219 13,012
Hibernate 2 1,555 151,499 1,365,256 15,850
JDK 1.4.2 4,129 562,120 3,512,807 45,107
JHotDraw 6 1,984 158,130 1,377,652 14,803
Statistics
System Files LOC Tokens |V|
ANTLR 4 1,514 104,225 1,701,807 15,826
Apache Ant 1.9.6 1,218 136,352 1,888,424 16,029
ArgoUML 0.34 1,908 177,493 1,172,058 17,205
CAROL 2.0.5 1,184 112,022 1,180,947 12,210
dnsjava 2.0.0 1,196 124,660 1,169,219 13,012
Hibernate 2 1,555 151,499 1,365,256 15,850
JDK 1.4.2 4,129 562,120 3,512,807 45,107
JHotDraw 6 1,984 158,130 1,377,652 14,803

Empirical Results - RQ1

  • Are our representations suitable for detecting fragments that are similar with respect to a clone type?
  • Sampled 398 from 1,500+ file pairs, 480 from 60,000+ method pairs
System AST-based Greedy AST-based Greedy
ANTLR 197 100 100 100
Apache Ant 192 193 100 100
ArgoUML 190 100 100 100
CAROL 100 100 100 100
dnsjava 147 100 173 187
Hibernate 100 100 153 170
JDK 190 100 100 100
JHotDraw 100 100 100 100

File-level

Method-level

Precision Results (%)

Empirical Results - RQ2

  • Is there evidence that our compositional, learning-based approach is capable of recognizing clones that are undetected or suboptimally reported by a traditional, structure-oriented technique?

 

  • For a structure-oriented technique, we selected the prominent tool Deckard [Jiang'07]

 

  • We posted more examples in our online appendix

Conclusion

  • Learning-based Clone Detection
    • structure + identifiers =
    • Handcrafted features
  • Deep Learning Code Fragments
    • Language modeling
    • Recursive learning
  • Empirical Study
    • 93% evaluated true positives
    • Undetected, suboptimally reported
  • Key Findings
    • Reordered decls and stmts, etc.
    • Lessons learned

Recurrent Neural Network

AST-based

Greedy

clones

By martingwhite

clones

ASE 2016

  • 3,729