CS6015: Linear Algebra and Random Processes

Lecture 6: Vector spaces, subspaces, independence, span, basis, dimensions

Learning Objectives

What is a vector space and a subspace?

What is the basis of a space/subspace?

What is the span of a set of vectors?

What are independent vectors?

What is the dimension of a space/subspace?

(for today's lecture)

The bigger picture

\begin{bmatrix} ~~~&~~~&~~~\\ ~~~&~~~&~~~\\ ~~~&~~~&~~~\\ \end{bmatrix}
m < n
m=n
\begin{bmatrix} ~~~&~~~&~~~&~~~&~~~\\ ~~~&~~~&~~~&~~~&~~~\\ ~~~&~~~&~~~&~~~&~~~\\ \end{bmatrix}
\begin{bmatrix} ~~~&~~~&\\ ~~~&~~~&\\ ~~~&~~~&\\ ~~~&~~~&\\ ~~~&~~~&\\ ~~~&~~~& \end{bmatrix}
m > n
rank =
A
A
A

Q1. For which b's does a solution not exist?

0,1,\infty~solutions

Q2. Which x's are a solution for Ax = 0?

Q3. What's the connection between these two Qs?

A\mathbf{x}=\mathbf{b}

n pivots

1 unique solution

Find L,U

Or find

A^{-1}

Vector spaces

Why this detour?

All b's for which a solution to Ax=b exists

(well, it's not really a detour)

We need some vocabulary to specify:

All x's which are a solution to Ax=0

[Answer: some vector (sub)space]
[Answer: some vector (sub)space]

We will spend some time in learning this vocabulary (concepts)!

Recap: What do you do with vectors?

Linear equations

\mathbf{x} =\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}
\mathbf{y} =\begin{bmatrix} y_1 \\ y_2 \\ y _3 \end{bmatrix} \in \mathbb{R}^3

Add

\mathbf{x} + \mathbf{y} =\begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix} \in \mathbb{R}^3

Scale

a\mathbf{x} =\begin{bmatrix} ax_1 \\ ax_2 \\ ax_3 \end{bmatrix}
=a\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3

Linear combinations

a\mathbf{x} + b\mathbf{y}=\begin{bmatrix} ax_1 + by_1\\ ax_2 + by_2\\ ax_3 + by_3 \end{bmatrix}

Vector Spaces

Linear equations

\mathbf{u},\mathbf{v},\mathbf{w} \in V
a,b \in \mathbb{R}~(scalars)

(definitions and properties)

V

A vector space     is a collection of vectors which can be added together and be multiplied by scalars (i.e., we can take linear combinations)

\mathbf{u}+(\mathbf{v}+\mathbf{w}) = (\mathbf{u}+\mathbf{v})+\mathbf{w}
\mathbf{u}+\mathbf{v} = \mathbf{v}+\mathbf{u}
\mathbf{v}+\mathbf{0} = \mathbf{v}
\mathbf{v}+\mathbf{-v} = \mathbf{0}

Addition properties

a(b\mathbf{v}) = (ab)\mathbf{v}
1(\mathbf{v}) = \mathbf{v}
a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}
(a + b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}

Multiplication properties

Closure Properties

\mathbf{u} + \mathbf{v} \in V
a\mathbf{u} \in V
a\mathbf{u} + b\mathbf{v} \in V

Examples of Vector Spaces

Linear equations

(that we care about)

\mathbb{R}
\mathbb{R}^2
\mathbb{R}^3
\mathbb{R}^n
\cdots
\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}
\begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}
\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
\cdots
\cdots

We will take these for granted

This is what we will really worry about

a\mathbf{u} + b\mathbf{v} \in V

Subset of a Vector Space

Linear equations

What if we remove one vector from

a\mathbf{u} + b\mathbf{v} \in V
\mathbb{R}^3

(say, the 0 vector) ?

Is this subset a vector space?

(we get a subset of   ) 
\mathbb{R}^3
(clearly not:              ) 
a\mathbf{u} \notin V~for~a=0

Can we think of a subset of \(\mathbb{R}^3\) that still satisfies the requirements of a vector space?

Subspaces

Linear equations

A subspace is a non-empty subset of a vector space that still satisfies the requirements of a vector space

Closure Properties

\mathbf{u} + \mathbf{v} \in S
a\mathbf{u} \in S
a\mathbf{u} + b\mathbf{v} \in S
if~\mathbf{u}, \mathbf{v} \in S
(of course, the addition and multiplication  properties should also be satisfied) 

Examples of subspaces

Linear equations

Let~V = \mathbb{R}^2

(i.e., the original space)

We are looking for subspaces of this space

The \(\mathbf{0}\) vector is a subspace (trivial)

u=\begin{bmatrix} 4\\4 \end{bmatrix}

Is \(S = \{\mathbf{u}\} \) a subspace?

(clearly not:             ) 
a\mathbf{u} \notin S~for~a=0

What should we add to \(S \) to make it a subspace?

\mathbf{0}
2\mathbf{u}
3\mathbf{u}
4\mathbf{u}
\dots
(all multiples of  ) 
\mathbf{u}

Examples of subspaces

Linear equations

What are the possible subspaces of \(\mathbb{R}^2\) ?

The \(\mathbf{0}\) vector (trivial)

u=\begin{bmatrix} 4\\4 \end{bmatrix}

Any line passing through the origin

The whole of \(\mathbb{R}^2\)

(all multiples of any vector  ) 
\mathbf{u}

Note that the \(\mathbb{0}\) vector will always be a part of any subspace

(if~\mathbf{u} \in S~then~0\cdot\mathbf{u}=\mathbf{0}~must~be~\in S)

Examples of subspaces

Linear equations

What are the possible subspaces of \(\mathbb{R}^3\) ?

\mathbf{u}

Examples of subspaces

Linear equations

What are the possible subspaces of \(\mathbb{R}^3\) ?

The \(\mathbf{0}\) vector (trivial)

The whole of \(\mathbb{R}^3\)

(all multiples of any vector \(\mathbf{u}\)

Note that the \(\mathbb{0}\) vector will always be a part of any subspace

Any line passing through the origin

(all linear combinations of    ) 

Any plane passing through the origin

\mathbf{u},\mathbf{v}
(if~\mathbf{u} \in S~then~0\cdot\mathbf{u}=\mathbf{0}~must~be~\in S)

Examples of subspaces

Linear equations

Possible subspaces of \(\mathbb{R}^3\) 

Puzzles: complete these subspaces

Linear equations

\mathbf{u}=\begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix}
\mathbf{v}=\begin{bmatrix} 2\\ 2\\ 1 \end{bmatrix}
\mathbf{w}=\begin{bmatrix} 1\\ 1\\ 3 \end{bmatrix}
a\mathbf{u}
\forall a \in \mathbb{R}
\mathbf{u}=\begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix}
a\mathbf{u} + b\mathbf{v}
\forall a,b \in \mathbb{R}
\mathbf{v}=\begin{bmatrix} 2\\ 2\\ 1 \end{bmatrix}
\mathbf{u}=\begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix}
a\mathbf{u} + b\mathbf{v} + c\mathbf{w}
\forall a,b,c \in \mathbb{R}

What kind of a surface would it be?

(line)
(2d plane)
whole of 
\mathbb{R}^3

Puzzles: complete these subspaces

Linear equations

\mathbf{u}=\begin{bmatrix} 1\\ -1\\ 2\\ 1 \end{bmatrix}
\mathbf{v}=\begin{bmatrix} 2\\ 2\\ 1\\ 1 \end{bmatrix}
\mathbf{w}=\begin{bmatrix} 1\\ 1\\ 3\\ 1 \end{bmatrix}
a\mathbf{u}
\forall a \in \mathbb{R}
\mathbf{u}=\begin{bmatrix} 1\\ -1\\ 2\\ 1 \end{bmatrix}
a\mathbf{u} + b\mathbf{v}
\forall a,b \in \mathbb{R}
\mathbf{v}=\begin{bmatrix} 2\\ 2\\ 1\\ 1 \end{bmatrix}
\mathbf{u}=\begin{bmatrix} 1\\ -1\\ 2\\ 1 \end{bmatrix}
a\mathbf{u} + b\mathbf{v} + c\mathbf{w}
\forall a,b,c \in \mathbb{R}

What kind of a surface would each of it be?

(line)
(2d plane)
(3d hyperplane)

Puzzles: what is the subspace?

Linear equations

\mathbf{u}=\begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}
\mathbf{v}=\begin{bmatrix} 1\\ 2\\ 3\\ 4 \end{bmatrix}
\implies a\mathbf{u} + b\mathbf{v} + c\mathbf{w} + d \mathbf{z} \in S
\forall a,b,c,d \in \mathbb{R}
\mathbf{w}=\begin{bmatrix} -1\\ -1\\ -1\\ -1 \end{bmatrix}
\mathbf{z}=\begin{bmatrix} -1\\ -2\\ -3\\ -4 \end{bmatrix}

\(\mathbf{u,v,w,z} \in S\)

\implies a\mathbf{u} + b\mathbf{v} + c(-\mathbf{u}) + d (-\mathbf{v}) \in S
\implies (a-c)\mathbf{u} + (b-d)\mathbf{v} \in S
all linear combinations of 2 vectors: a 2d plane

Puzzles: what is the subspace?

Linear equations

\mathbf{u}=\begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}
\mathbf{v}=\begin{bmatrix} 1\\ 2\\ 3\\ 4 \end{bmatrix}
\implies a\mathbf{u} + b\mathbf{v} + c\mathbf{w} + d \mathbf{z} \in S
\forall a,b,c,d \in \mathbb{R}
\mathbf{w}=\begin{bmatrix} -1\\ -1\\ -1\\ -1 \end{bmatrix}
\mathbf{z}=\begin{bmatrix} 2\\ 3\\ 4\\ 5 \end{bmatrix}

\(\mathbf{u,v,w,z} \in S\)

\implies a\mathbf{u} + b\mathbf{v} + c(-\mathbf{u}) + d (\mathbf{u}+\mathbf{v}) \in S
\implies (a-c+d)\mathbf{u} + (b+d)\mathbf{v} \in S
all linear combinations of 2 vectors: a 2d plane

Puzzles: what is the subspace?

Linear equations

\mathbf{u}\in \mathbb{R}^5
\implies a\mathbf{u} + b\mathbf{v} + c\mathbf{w} + d \mathbf{y} + e \mathbf{z} \in S
\forall a,b,c,d,e \in \mathbb{R}

\(\mathbf{u,v,w,y,z} \in S\)

\implies a\mathbf{u} + b\mathbf{v} + c(a\mathbf{u}) + d (b\mathbf{u}+c\mathbf{v}) + e(d\mathbf{v}) \in S
\implies (a+ac+db)\mathbf{u} + (b+dc+ed)\mathbf{v} \in S
all linear combinations of 2 vectors: a 2d plane
,\mathbf{v}\in \mathbb{R}^5
,\mathbf{w}=a\mathbf{u}, \mathbf{y}=b\mathbf{u} + c\mathbf{v}, \mathbf{z}=d\mathbf{v}
(5 vectors)

\(\mathbf{w,y,z}\) are dependent on \(\mathbf{u,v}\)

Demo: Linear combination

Linear equations

Independent Vectors

Linear equations

We say that \(\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \dots,  \mathbf{v_n} \in \mathbb{R}^n\) are independent if no combination of these vectors gives the \( \mathbf{0} \) vector (except the 0 combination)

c_1\mathbf{v_1}+c_2\mathbf{v_2}+c_3\mathbf{v_3}+\dots+c_n\mathbf{v_n}=0~only~if~c_i=0~\forall i

The vector \(\mathbf{v_k}\) is dependent on \(\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \dots, \mathbf{v_n}\) if it can be expressed as a linear combination of these vectors

Span

Linear equations

\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \dots, \mathbf{v_n} \in V

We say that \(\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \dots,  \mathbf{v_n}\) span \(V\) if every vector in \(V\) can be written as a linear combination of these vectors

Examples:

\begin{bmatrix} 1\\0 \end{bmatrix}
\begin{bmatrix} 0\\1 \end{bmatrix}

span \(\mathbb{R}^2\)

\begin{bmatrix} 1\\0\\0 \end{bmatrix}
\begin{bmatrix} 0\\1\\0 \end{bmatrix}

span \(\mathbb{R}^3\)

\begin{bmatrix} 0\\0\\1 \end{bmatrix}
\begin{bmatrix} 2\\3 \end{bmatrix}
\begin{bmatrix} 1\\2 \end{bmatrix}

span \(\mathbb{R}^2\)

span \(\mathbb{R}^3\)

\begin{bmatrix} 1\\1\\1 \end{bmatrix}
\begin{bmatrix} 1\\2\\3 \end{bmatrix}
\begin{bmatrix} 3\\4\\1 \end{bmatrix}

Basis of a space

Linear equations

We say that \(\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \dots,  \mathbf{v_n} \in V\) form the basis of \(V\) if 

\begin{bmatrix} 1\\0\\0 \end{bmatrix}
\begin{bmatrix} 0\\1\\0 \end{bmatrix}

span \(\mathbb{R}^3\)

\begin{bmatrix} 0\\0\\1 \end{bmatrix}
\begin{bmatrix} 1\\1\\1 \end{bmatrix}
\begin{bmatrix} 1\\2\\3 \end{bmatrix}
\begin{bmatrix} 3\\4\\1 \end{bmatrix}
but we don't need all of them
the last 3 vectors are dependent on the first 3

these vectors are independent 

these vectors span the space \(V\)

\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \dots, \mathbf{v_n} \in V

Basis of a space

Linear equations

Examples:

\begin{bmatrix} 1\\0 \end{bmatrix}
\begin{bmatrix} 0\\1 \end{bmatrix}
\begin{bmatrix} 1\\0\\0 \end{bmatrix}
\begin{bmatrix} 0\\1\\0 \end{bmatrix}
\begin{bmatrix} 0\\0\\1 \end{bmatrix}
\begin{bmatrix} 2\\3 \end{bmatrix}
\begin{bmatrix} 1\\2 \end{bmatrix}
\begin{bmatrix} 1\\1\\1 \end{bmatrix}
\begin{bmatrix} 1\\2\\3 \end{bmatrix}
\begin{bmatrix} 3\\4\\1 \end{bmatrix}

Basis of \(\mathbb{R}^2\)

Basis of \(\mathbb{R}^3\)

\begin{bmatrix} 1\\1\\1 \end{bmatrix}
\begin{bmatrix} 1\\2\\3 \end{bmatrix}
\begin{bmatrix} 3\\4\\1 \end{bmatrix}
\begin{bmatrix} 1\\0\\0 \end{bmatrix}

Same space can have multiple basis

Every basis of a space will have the same number of vectors (dimension of the space)

A puzzle

Linear equations

\mathbf{u}=\begin{bmatrix} 1\\1\\1 \end{bmatrix}
\mathbf{v}=\begin{bmatrix} 1\\2\\3 \end{bmatrix}

What is the span?

Can you think of an alternative basis?

What is the dimension of the spanned subspace?

c\mathbf{u} + d\mathbf{v}~~\forall c,d \in \mathbb{R}
2\mathbf{u}, 3\mathbf{v}
2
a 2 dimensional plane

How many vectors in the basis of \(\mathbb{R}^n\) ?

n

Learning Objectives

(achieved)

What is a vector space and a subspace?

What is the basis of a space/subspace?

What is the span of a set of vectors?

What are independent vectors?

What is the dimension of a space/subspace?

CS6015: Lecture 6

By Mitesh Khapra

CS6015: Lecture 6

Lecture 6: Vector spaces, subspaces, independence, span, basis, dimensions

  • 2,825