Variational Quantum Linear Solver for Multiphysics Problems

Mostafa Atallah

Cairo University

\frac{\partial^2 T}{\partial x^2} = 0

The Heat Equation

T_{i+1} - 2T_{i}+ T_{i-1} = 0

apply FDM

\begin{pmatrix} -2 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & -2 & 0 & 1 & 0 & 0 & 0 & 0\\ 1 & 0 & -2 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 0 & -2 & 1 & 1 & 0 & 0\\ 0 & 0 & 1 & 1 & -2 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 & 0 & -2 & 0 & 1\\ 0 & 0 & 0 & 0 & 1 & 0 & -2 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & -2 \end{pmatrix} \begin{pmatrix} T_{0} \\ T_{1} \\ T_{2} \\ T_{3} \\ T_{4} \\ T_{5} \\ T_{6} \\ T_{7} \end{pmatrix} =\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}
A x = b
A = 2 \left( I -0.125\; X_0 X_1 X_2 + 0.125 \; X_0 Y_1 Y_2 + 0.125 \; Y_0 X_1 Y_2 - 0.125 \; Y_0 Y_1 X_2 - 0.25 \; X_1 X_2 - 0.25 \; Y_1 Y_2 - 0.5 \; X_2 \right)

VQLS

R_y(\alpha_i) = \mathbf{e}^{-\imath \; \alpha_i Y / 2}
C = 1 - \frac{| \left < b | \Phi \right >|^2}{ \left < \Phi|\Phi \right >}
\left<\Phi|\Phi \right> = \sum_{m, n} c_m^* c_n \left < 0 | V^\dagger A_m^\dagger A_n V |0 \right >
|\left < b | \Phi \right > |^2 = \sum_{m, n} c_m^* c_n \left < 0 | V^\dagger A_m^\dagger U |0 \right > \left < 0 | U^\dagger A_n V |0 \right >
V(\alpha)

Hadamard Test

Hadamard Test

CCZ = MCMT(ctrl=2, target=1, U=Z)

Results (so far)

  • Problem: 8 x 8 matrix (most of its elements are zeros)
  • Number of Qubits: 3 (working qubits) + 1 (control qubit of the Hadamard test)
  • Circuit Depth: 18
  • Backend: Aer Simulator
  • Number of Shots: 10,000
  • Optimizer: COBYLA
  • Min Cost: 0.116
  • Max Overlap: 0.737

problem

FDM

FEM

Matrix Decomposition

VQLS

solution

HHL

Summary

Possible outcomes of the mentorship:

  • Study and analyze the performance of the Variational Quantum Linear Solver (VQLS) in general
  • Solve some Multiphysics problems such as the Heat equation, etc. using VQLS.
  • Execute the results using Qiskit on both a simulator and a device.

Solving Multiphysics Problems on quantum computers

By Mostafa Ataallah

Solving Multiphysics Problems on quantum computers

  • 42