Graph Analysis via

\(p\)-Modulus

Nathan Albin

K-State Mathematics

Theory and Applications

Shameless Plug

Modulus in the Continuum

\begin{equation*} \begin{cases} \Delta u = 0\quad\text{in }\Omega,\\ u\big|_A = 0,\\ u\big|_B = 1,\\ \frac{\partial u}{\partial n}\big|_{C\cup D} = 0 \end{cases} \end{equation*}
\begin{equation*} \begin{split} \underset{u}{\text{minimize}}\quad&\int_\Omega|\nabla u|^2\;dx\\ \text{subject to}\quad& u\big|_A=0\\ &u\big|_B=1 \end{split} \end{equation*}
\int_\gamma |\nabla u|\;ds \ge 1
\begin{equation*} \begin{split} \underset{\rho}{\text{minimize}}\quad&\int_\Omega\rho^2\;dx\\ \text{subject to}\quad&\rho\ge 0,\\ & \int_\gamma\rho\;ds\ge 1\quad\forall\;\gamma\in\Gamma(A,B) \end{split} \end{equation*}
\begin{equation*} \begin{split} \underset{u}{\text{minimize}}\quad&\int_\Omega|\nabla u|^2\;dx\\ \text{subject to}\quad& u\big|_A=0\\ &u\big|_B=1 \end{split} \end{equation*}
\begin{equation*} \begin{split} \underset{\rho}{\text{minimize}}\quad&\int_\Omega\rho^2\;dx\\ \text{subject to}\quad&\rho\ge 0,\\ & \int_\gamma\rho\;ds\ge 1\quad\forall\;\gamma\in\Gamma(A,B) \end{split} \end{equation*}

All paths connecting A to B

\begin{equation*} \begin{split} \underset{\rho}{\text{minimize}}\quad&\int_\Omega\rho^2\;dx\\ \text{subject to}\quad&\rho\ge 0,\\ & \int_\gamma\rho\;ds\ge 1\quad\forall\;\gamma\in\Gamma(A,B) \end{split} \end{equation*}

All paths connecting A to B

\text{Mod}(\Gamma(A,B))

Modulus on a Graph

\begin{equation*} \begin{split} \underset{\rho\in\mathbb{R}^E_{\ge 0}}{\text{minimize}}\quad&\sum_{e\in E}\rho(e)^2\\ \text{subject to}\quad&\rho\ge 0,\\ & \sum_{e\in\gamma}\rho(e)\ge 1\quad\forall\;\gamma\in\Gamma(a,b) \end{split} \end{equation*}
\text{Mod}(\Gamma(a,b))
\frac{1}{2}
\frac{1}{2}
\frac{1}{4}
\frac{1}{4}
\mathcal{E}(\rho) := \sum_{e\in E}\rho(e)^2 = \frac{1}{4} + \frac{1}{4} + \frac{1}{16} + \frac{1}{16} = \frac{5}{8}
\frac{1}{2}
\frac{1}{2}
\frac{1}{4}
\frac{1}{4}
\mathcal{E}(\rho) := \sum_{e\in E}\rho(e)^2 = \frac{1}{4} + \frac{1}{4} + \frac{1}{16} + \frac{1}{16} = \frac{5}{8}

admissible but not optimal

\alpha
1-\alpha
\frac{1-\alpha}{2}
\frac{1-\alpha}{2}
\mathcal{E}(\rho) = \alpha^2 + (1-\alpha)^2 + 2\left(\frac{1-\alpha}{2}\right)^2
\frac{3}{5}
\frac{2}{5}
\frac{1}{5}
\frac{1}{5}
\mathcal{E}(\rho) = \frac{9}{25} + \frac{4}{25} + 2\frac{1}{25} = \frac{3}{5} = \text{Mod}(\Gamma(a,b))

Effective Resistance

\(1\)

\(1\)

\(1\)

\(1\)

\(1\)

\(1\)

\(2\)

\(1\)

\(\frac{2}{3}\)

\(\frac{5}{3}\)

Effective Resistance

\text{Mod}(\Gamma(a,b)) = R_{\text{eff}}(a,b)^{-1}

\(1\)

\(1\)

\(1\)

\(1\)

\(1\)

\(1\)

\(2\)

\(1\)

\(\frac{2}{3}\)

\(\frac{5}{3}\)

\begin{equation*} \begin{split} \underset{\phi\in\mathbb{R}^V}{\text{minimize}}\quad&\sum_{\{x,y\}\in E}(\phi(x)-\phi(y))^2\\ \text{subject to}\quad&\phi(a)=0,\\ &\phi(b)=1 \end{split} \end{equation*}
\text{Mod}(\Gamma(a,b))

The Probabilistic Interpretation

\(\underline{\gamma},\underline{\gamma'}\) are iid random paths

\(\mathbb{P}\left(\underline{\gamma}=\gamma_i\right) = \mu(\gamma_i)\)

Minimum Expected Overlap

\(\underline{\gamma},\underline{\gamma'}\) are iid random paths

\(\mathbb{P}\left(\underline{\gamma}=\gamma_i\right) = \mu(\gamma_i)\)

Minimum Expected Overlap

\mathbb{E}_\mu|\underline{\gamma}\cap\underline{\gamma'}| = \alpha^2(2) + 2\alpha(1-\alpha)(1) + (1-\alpha)^2(3)

\(\underline{\gamma},\underline{\gamma'}\) are iid random paths

\(\mathbb{P}\left(\underline{\gamma}=\gamma_i\right) = \mu(\gamma_i)\)

Minimum Expected Overlap

\mathbb{E}_\mu|\underline{\gamma}\cap\underline{\gamma'}| = \alpha^2(2) + 2\alpha(1-\alpha)(1) + (1-\alpha)^2(3)
\alpha=\frac{2}{3}\quad\implies\quad\mathbb{E}_\mu|\underline{\gamma}\cap\underline{\gamma'}| = \frac{5}{3} = \text{Mod}(\Gamma)^{-1}

Minimum Expected Overlap

\text{Mod}(\Gamma)^{-1} = \min_{\mu\in\mathcal{P}(\Gamma)}\mathbb{E}_\mu|\underline{\gamma}\cap\underline{\gamma'}|

pmfs on \(\Gamma\)

modulus prefers short paths + variety

Canonical Example

\(k\) parallel paths of length \(\ell\)

\(\mu(\gamma_i)=\frac{1}{k}\) for \(i=1,2,\ldots,k\)

\text{Mod}(\Gamma)= \left(\min_{\mu\in\mathcal{P}(\Gamma)}\mathbb{E}_\mu|\underline{\gamma}\cap\underline{\gamma'}|\right)^{-1} = \left(\frac{1}{k}(\ell) + \frac{k-1}{k}(0)\right)^{-1} = \frac{k}{\ell}

Generalizing the Energy

\begin{equation*} \begin{split} \underset{\rho\in\mathbb{R}^E_{\ge 0}}{\text{minimize}}\quad&\mathcal{E}_{p,\sigma}(\rho)\\ \text{subject to}\quad&\rho\ge 0,\\ & \sum_{e\in\gamma}\rho(e)\ge 1\quad\forall\;\gamma\in\Gamma(a,b) \end{split} \end{equation*}
\mathcal{E}_{p,\sigma}(\rho) = \sum_{e\in E}\sigma(e)\rho(e)^p,\quad 1\le p<\infty
\mathcal{E}_{\infty,\sigma}(\rho) = \max_{e\in E}\sigma(e)\rho(e)
\text{Mod}_{p,\sigma}(\Gamma)

Shortest Path

\text{Mod}_{\infty,\sigma}(\Gamma(a,b)) = \text{shortest}(a,b;\sigma^{-1})^{-1}

Max-Flow Min-Cut

\text{Mod}_{1,\sigma}(\Gamma(a,b)) = \text{min-cut}(a,b;\sigma)

Effective Resistance

\text{Mod}_{2,\sigma}(\Gamma(a,b)) = R_\text{eff}(a,b;\sigma)^{-1}

Modulus Metrics

(a,b)\mapsto \text{Mod}_{p,\sigma}(\Gamma(a,b))^{-\frac{q}{p}}

is a metric for \(1<p<\infty\)

Generalizing the Family of Objects

Objects are Vectors

e_1
e_2
e_3
e_4
\gamma_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}
\gamma_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}

Objects are Vectors

e_1
e_2
e_3
e_4
\gamma_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}
\gamma_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}

In general, \(\Gamma\subset\mathbb{R}^E_{\ge 0}\)

\(\text{Mod}(\Gamma)\)

\begin{equation*} \begin{split} \underset{\rho\in\mathbb{R}^E_{\ge 0}}{\text{minimize}}\quad&\sum_{e\in E}\rho(e)^2\\ \text{subject to}\quad&\rho\ge 0,\\ & \gamma^T\rho\ge 1\quad\forall\;\gamma\in\Gamma \end{split} \end{equation*}

\(\text{Mod}(\Gamma)\)

\begin{equation*} \begin{split} \underset{\rho\in\mathbb{R}^E_{\ge 0}}{\text{minimize}}\quad&\sum_{e\in E}\rho(e)^2\\ \text{subject to}\quad&\rho\ge 0,\\ & \gamma^T\rho\ge 1\quad\forall\;\gamma\in\Gamma \end{split} \end{equation*}
\rho\in\text{Adm}(\Gamma)

Fulkerson Duality

\mathbb{R}^E

Fulkerson Duality

\mathbb{R}^E

Fulkerson Duality

\mathbb{R}^E
\text{Adm}(\Gamma)

Fulkerson Duality

\hat{\Gamma} = \text{ext}(\text{Adm}(\Gamma))
\mathbb{R}^E
\text{Adm}(\Gamma)

Fulkerson Duality

\text{Mod}_{p,\sigma}(\Gamma)^{\frac{1}{p}}\text{Mod}_{q,\hat{\sigma}}(\hat{\Gamma})^{\frac{1}{q}} = 1
\hat{\sigma} = \sigma^{-\frac{q}{p}}

Key Example:

\(\Gamma\) = \(ab\)-paths

\(\hat{\Gamma}\) = \(ab\)-cuts

\begin{equation*} \begin{split} \underset{\eta\in\mathbb{R}^E_{\ge 0}}{\text{minimize}}\quad&\sum_{e\in E}\eta(e)^2\\ \text{subject to}\quad&\eta\ge 0,\\ & \hat{\gamma}^T\eta\ge 1\quad\forall\;\hat{\gamma}\in\hat{\Gamma} \end{split} \end{equation*}

\(1-\alpha\)

\(1-\alpha\)

\(1\)

\(\alpha\)

\mathcal{E}(\eta) = 1 + \alpha^2 + 2(1-\alpha)^2
\alpha=\frac{2}{3}\quad\implies\mathcal{E}(\eta) = \frac{5}{3}=\text{Mod}(\hat{\Gamma})

\(\frac{1}{3}\)

\(\frac{1}{3}\)

\(1\)

\(\frac{2}{3}\)

\(\frac{3}{5}\)

\(\frac{2}{5}\)

\(\frac{1}{5}\)

\(\frac{1}{5}\)

\text{Mod}(\Gamma)=\frac{3}{5}
\text{Mod}(\hat{\Gamma})=\frac{5}{3}
\eta^* = \frac{\rho^*}{\text{Mod}(\Gamma)}

\(\frac{1}{3}\)

\(\frac{1}{3}\)

\(1\)

\(\frac{2}{3}\)

\(\mu(\gamma_2)=\frac{2}{3}\)

\mathbb{E}_{\mu^*}|\underline{\gamma}\cap\underline{\gamma'}|=\frac{5}{3}
\text{Mod}(\hat{\Gamma})=\frac{5}{3}
\eta^*(e) = \mathbb{E}_{\mu^*}(\underline{\gamma}(e))

\(\mu(\gamma_1)=\frac{1}{3}\)

Families and Structural Properties

family property
connecting paths metrics
spanning trees hierarchical structure
cycles communities
center-to-shell paths centrality
via walks betweenness

Modulus Doesn't Need Graphs

What do we need?

  • "ground set" \(E\)
  • "objects" \(\Gamma\in\mathbb{R}^E_{\ge 0}\)

For example,

  • hypergraphs
  • matroids
  • permutations
  • ...

Play With the Code

Thank You

these slides

Introduction to Discrete Modulus

By nathan_albin

Introduction to Discrete Modulus

  • 68