Scala & FP

Produced by

Distributed Computing, corp.

@Noootsab

Proud husband and father

Glasses caused by Maths graduation

Fashion victim after CS graduation

Lost in Geomatics and GIS

Data evangelist via NextLab

Co-founded Wajug

Helper and organizer of Devoxx4Kids

Scala trainer

Oh, and I wrote a Packt book about Play! 2

Why I mean it!

and others do...

Scala has a reputation to be accessible

It eases the maths (mostly [matrix]  algebra)

The CS world is changing (fast)

It shifts from the cloud to analyses
That is, from IT needs to Market opportunities

Reused YOUR knowledge

Fact: syntax close to Java, C#, Ruby, ...

CauseObject Oriented

 
case class Person(  name:String, first:String, 
                    age:Double, gender:Gender, 
                    father:Option[Person], 
                    mother:Option[Person], 
                    children:List[Child]=Nil
) {
  def incAge(n:Int):Person = copy(age = age+n)

  def newSon(child:Person):(Person, Person) = {
    val newChild = this.gender match {
        case Male => child.copy(father = Some(this))
        case Female => child.copy(mother = Some(this))
    }
    (newChild, this.copy(children = newChild :: children)
  }
}
val _Noah = Person("Petrella", "Noah", 
                   age=4, Male,
                   mother=Some(Sandrine)
                   father=None)

val boringNoootsab = Person("Petrella", "Andy", 
                            32, Male, 
                            father=Some(Arcangelo),
                            mother=Some(Nadine))

Following the wave

Fact: Functional Programming ftw

Cause: Scalable Language

Please, bear with me...

WHO

a

LOT

mainly data fans

Coursera

10⁶ online students

Slightly moving from PHP→Scala

Twitter

From Blue Whale to Analytic Platform

Netflix

Billion devices

Historical events

Real-time analytics

and counting...

Azavea

Socrata

AirBNB

Virdata

eBay

PowerInbox

LinkedIn

BBC

Snips

Ooyala

Functional Programming

in a nutshell

Input x

can be a function...

Defines a general process

that could behave differently

listOfNames map { name => DB.getByName(name) }

listOfPersons flatMap { person => person.friends }

listOfFriends filter { (f:Friend) => f.met moreThan (10 years) }

listOfOldFriends.count(_.person.gender != me.gender)

OUTPUT f(X)

bah... can be a function as well..

Prepares a process

that will be available for later usage 

def authentication(manager:SecurityManager): User=>Authentication

def source(url:String): Authentication=>DataRepo=>Data

//[...]

val authenticate = authentication(FakeSecurityManager)
val settings = source("/settings")
def request = {
  val user = //...
  val auth = authenticate(user)
  val settingsFetcher = settings(auth)
  // and so on
}

Show me!

// linear regression: returns the coefficients and the `prediction` function
def lm(x:List[Double], y:List[Double]):((Double, Double), Double=>Double) = {
  val n = x.size
  val ẍ = x.sum.toDouble / n
  val ÿ = y.sum.toDouble / n
  val Sp = ((x ∙- ẍ) ∙* (y ∙- ÿ) sum) / (n-1)
  val Sx2 = ((x ∙- ẍ) ∙^ 2 sum) / (n-1)
  val ß1 = Sp / Sx2
  val ß0 = ÿ - ß1 * ẍ
  val coefs = (ß0, ß1)
  val predict = (d:Double) => ß0 + ß1 * d
  (coefs, predict)
}
def test(ß0:Double = 18.1d, ß1:Double = 6d, error:Int=>List[Double]) = {
  val n = 10000
  val x:List[Double] = -n.toDouble to n by 1 toList
  val e = error(2*n+1)
  val y:List[Double] = ß0 ∙+: (ß1 ∙*: x) ∙+: e
  lm(x, y)
}
val error = rnorm(mean=0, sigma=5) // gen gaussian nbs 
val model = test(103, 7, error)

So, even hard things could be done simply

keeping readability

conciseness

 

Honestly,

showing the OO version isn't worthwhile...

Lazy

yeah yeah... I'll do it

Avoid computations

Delayed initialization

// delay initialization of the application at usage time
lazy val app:App = initializeApp()

// only compute the string `m` when accessing it, hence with debug is enabled
def logDebug(m: => String)= if (LOG.debugEnabled) LOG.debug(m) else ()

Sooo laaazy

Come back... in a potential future

TL; DW

val app:Future[App] = initializeApp()

val http:Future[HttpClient] = app.map( appInst => appInst.http.client )

def isOk(url:String):Future[Boolean] = 
    http.flatMap { client => 
          client.get(url) // execute request
        }
        .map{ resp => 
          resp.code      // get the HTTP code only
        }
        .filter(code => code == 200) // only cares about 200
        .recoverWith {
          // catches the comm' prob. → and retries
          case x:CommunicationException => isOk(url)
        }.recover {
          // if fails → not ok
          case e: Throwable => false
        }

Code... now

(I promised)

// Build an **INFINITE** List of `A`s
class LazyCons[+A](a:A, t: => Lazy[A]) extends Lazy[A] {
  val head = Some(a)
  lazy val tail = t
}
// read a file in a LAZY manner
// ... more helpful when using NIO of course
def fetch(file:String):Lazy[Future[String]] = {
  val texts = io.Source.fromFile(new java.io.File(file)).getLines

  def readLine(texts:Iterator[String]):Lazy[Future[String]] = //...
  readLine(texts)
}
val fibs:Stream[Int] = 0 #:: 1 #:: ((fibs zip fibs.drop(1)) map  ((_:Int) + (_:Int)).tupled)

Mashup

A function could either 

→ be called on data (method, sync)

→ be sent to the data (message, async)

A function composes

A function is a delayed computation

...

What if

I compose several computations

WHAT IF

I send the composition to where the data is?

We've created Spark!

(back to Gerard's talk)

DO YA Wanna funk?

trait Data {
  def dependent:List[Double]
  def observed:Matrix
  def bootstrap(proportion:Double):Future[Data]
}
trait Model {
  type Coefs
  def apply(data:Data):Future[(Coefs, List[Double]=>Future[Double])]
}
def bagging(model:Model)(agg:Aggregation[model.Coefs], n:Int)(data:Data):Future[model.Coefs] ={
  def exec:Future[model.Coefs] =  for {
                                    sample     <- data.bootstrap(0.6)
                                    (coefs, _) <- model(sample)
                                  } yield coefs

  val execs:List[Future[model.Coefs]] = List.fill(n)(exec)

  val coefsList:Future[List[model.Coefs]] = Future.sequence(execs)

  val result:Future[model.Coefs] = coefsList map agg
  result
}

Q.E.D.

Thanks for stayin'

Join me on Twitter @Noootsab

Head to @NextLab_be: http://nextlab.be

Check http://ftts.nextlab.be for future Scala trainings

Scala & Functional Programming in Distributed Computing World

By andy petrella

Scala & Functional Programming in Distributed Computing World

  • 2,252