Sarah Dean PRO
asst prof in CS at Cornell
Prof. Sarah Dean
MW 2:55-4:10pm
255 Olin Hall
1. Recap & Example
2. Calculus Review
3. Multivariate Approximations
4. Preview: Nonlinear Control
\(\mathcal M = \{\mathcal{S}, \mathcal{A}, c, f, H\}\)
minimize \(\displaystyle\sum_{t=0}^{H-1} c_t(s_t, a_t)+c_H(s_H)\)
s.t. \(s_{t+1}=f(s_t, a_t), ~~a_t=\pi_t(s_t)\)
\(\pi\)
DP Algorithm: \(V^\star_{H}(s)=c_H(s)\)$$V_{t}^\star(s) =\min_a c(s,a)+V^\star_{t+1}(f(s,a))$$
\(a_t\)
\(a_t\)
1. Recap & Example
2. Calculus Review
3. Multivariate Approximations
4. Preview: Nonlinear Control
PollEv
\( \frac{\partial g_j (x)}{\partial x_i}\)
\(i\)
\(j\)
$$\frac{\partial g (x)}{\partial x_i \partial x_j} \approx \frac{1}{2\delta}\Big[ \frac{g(x+\delta e_j+\delta e_i)- g(x-\delta e_j+\delta e_i)}{2\delta} \\- \frac{g(x+\delta e_j -\delta e_i)-g(x-\delta e_j -\delta e_i)}{2\delta} \Big]$$
$$\frac{\partial g (x)}{\partial x_i \partial x_j} \approx \frac{1}{2\delta}\Big[ \frac{\partial g (x+\delta e_i)}{\partial x_j} - \frac{\partial g (x -\delta e_i)}{\partial x_j} \Big]$$
1. Recap & Example
2. Calculus Review
3. Multivariate Approximations
4. Preview: Nonlinear Control
\( \frac{\partial f_j (s,a)}{\partial s_i}\)
\(i\)
\(j\)
\( \frac{\partial f_j (s,a)}{\partial a_i}\)
\(i\)
\(j\)
\(a_t\)
$$\nabla_s f(s,a) = \begin{bmatrix} \frac{\partial f_1 (s,a)}{\partial \mathsf{pos}} & \frac{\partial f_2 (s,a)}{\partial \mathsf{pos}} \\ \frac{\partial f_1 (s,a)}{\partial \mathsf{vel}} & \frac{\partial f_2 (s,a)}{\partial \mathsf{vel}} \end{bmatrix} $$
\(=\begin{bmatrix} f_1(s,a)\\f_2(s,a)\end{bmatrix}\)
\( \frac{\partial c (s,a)}{\partial s_i}\)
\( \frac{\partial c (s,a)}{\partial a_i}\)
\(i\)
\(i\)
\( \frac{\partial^2 c (s,a)}{\partial s_i\partial s_j}\)
\( \frac{\partial^2c(s,a)}{\partial a_i\partial a_j}\)
\( \frac{\partial^2 c (s,a)}{\partial a_i \partial s_j}\)
\(i\)
\(i\)
\(i\)
\(j\)
\(j\)
\(j\)
symmetric
\(a_t\)
1. Recap & Example
2. Calculus Review
3. Multivariate Approximations
4. Preview: Nonlinear Control
minimize \(\displaystyle\sum_{t=0}^{H-1} c(s_t, a_t)\)
s.t. \(s_{t+1}=f(s_t, a_t), ~~a_t=\pi_t(s_t)\)
\(\pi\)
\(a_t\)
\(a_t\)
\(\pi_t^\star(s) = \begin{bmatrix}{ \gamma^\mathsf{pos}_t }& {\gamma_t^\mathsf{vel}} \end{bmatrix}s = \gamma^\mathsf{pos}_t \mathsf{pos} + \gamma^\mathsf{vel}_t \mathsf{vel} \)
\(\gamma^\mathsf{pos}\)
\(\gamma^\mathsf{vel}\)
\(-1\)
\(t\)
\(H\)
\(a_t\)
\(a_t\)
By Sarah Dean