Use cases for multiagent simulation in passenger and freight transport

Sebastian Hörl

7 February 2022

at Paris School of Economics

http://www.loc.gov/pictures/item/2016800172/

The street in 1900

The street today

https://commons.wikimedia.org/wiki/File:Atlanta_75.85.jpg

  • Autonomous Mobility

  • Mobility as a Service

  • Mobility on Demand

  • Electrification

  • Aerial Mobility

Julius Bär / Farner

The street of tomorrow?

Julius Bär / Farner

I. Transport simulation

Classic transport planning

  • Zones
  • Flows
  • Peak hours
  • User groups

Aggregated

Agent-based models

0:00 - 8:00

08:30 - 17:00

17:30 - 0:00

0:00 - 9:00

10:00 - 17:30

17:45 - 21:00

22:00 - 0:00

  • Discrete locations
  • Individual travelers
  • Individual behaviour
  • Whole day analysis

Disaggregated

Icons on this and following slides: https://fontawesome.com

MATSim

  • Flexible, extensible and well-tested open-source transport simulation framework
     
  • Used by many research groups and companies all over the world
     
  • Extensions for parking behaviour, signal control, location choice, freight, ...

matsim-org/matsim-libs

MATSim

Synthetic demand

MATSim

Mobility simulation

Synthetic demand

MATSim

Decision-making

10:00 - 17:30

17:45 - 21:00

22:00 - 0:00

Mobility simulation

Synthetic demand

MATSim

Decision-making

Mobility simulation

Synthetic demand

MATSim

Decision-making

Mobility simulation

Analysis

Synthetic demand

https://pixabay.com/en/zurich-historic-center-churches-933732/

II. AMoD in Zurich

Cost structures?

User preferences?

System impact?

Cost Calculator for automated mobility

Stated preference survey

MATSim simulation

1

2

3

What do we know about automated taxis?

What do we know about automated taxis?

Bösch, P.M., F. Becker, H. Becker and K.W. Axhausen (2018) Cost-based analysis of autonomous mobility services, Transport Policy, 64, 76-91

What do we know about automated taxis?

Felix Becker, Institute for Transport Planning and Systems, ETH Zurich.

VTTS

13 CHF/h


 

AMoD

Taxi

19 CHF/h

 

 

Conventional

Car

12 CHF/h
 

 

Public

Transport

AMoD

Car by Adrien Coquet from the Noun Project

Bus by Simon Farkas from the Noun Project

Wait by ibrandify from the Noun Project

VTTS

13 CHF/h
 

 

AMoD

Taxi

19 CHF/h

 

 

Conventional

Car

12 CHF/h
 

 

Public

Transport

 
21 CHF/h

 


32 CHF/h

AMoD

Car by Adrien Coquet from the Noun Project

Bus by Simon Farkas from the Noun Project

Wait by ibrandify from the Noun Project

Model structure

Cost calculator

Plan modification

Discrete Mode Choice Extension

Mobility simulation

Prediction

Price

Trips

- Utilization

- Empty distance, ...

- Travel times

- Wait times, ...

Fleet sizing with dynamic demand

Fleet sizing with dynamic demand

Fleet sizing with dynamic demand

Visualisation

Automated taxi

Pickup

Dropoff

Hörl, S., F. Becker and K.W. Axhausen (2020) Automated Mobility on Demand: A comprehensive simulation study of cost, behaviour and system impact for Zurich

Hörl, S., F. Becker and K.W. Axhausen (2020) Automated Mobility on Demand: A comprehensive simulation study of cost, behaviour and system impact for Zurich

13% reduction in vehicles

100% increase in VKT

Hörl, S., F. Becker and K.W. Axhausen (2020) Automated Mobility on Demand: A comprehensive simulation study of cost, behaviour and system impact for Zurich

100% increase in VKT

Hörl, S., F. Becker and K.W. Axhausen (2020) Automated Mobility on Demand: A comprehensive simulation study of cost, behaviour and system impact for Zurich

Other aspects

Hörl, S., C. Ruch, F. Becker, E. Frazzoli and K.W. Axhausen (2019) Fleet operational policies for automated mobility: a simulation assessment for Zurich, Transportation Research: Part C, 102, 20-32.

Fleet control

Operational constraints

Spatial constraints

Intermodality

Pooling

III. Demand data

https://pixabay.com/en/paris-eiffel-tower-night-city-view-3296269/

Synthetic travel demand

Population census (RP)

Population census (RP)

Income data (FiLoSoFi)

Synthetic travel demand

Population census (RP)

Income data (FiLoSoFi)

Commuting data (RP-MOB)

Synthetic travel demand

Population census (RP)

Income data (FiLoSoFi)

Commuting data (RP-MOB)

Household travel survey (EDGT)

0:00 - 8:00

08:30 - 17:00

17:30 - 0:00

0:00 - 9:00

10:00 - 17:30

17:45 - 21:00

22:00 - 0:00

Synthetic travel demand

Population census (RP)

Income data (FiLoSoFi)

Commuting data (RP-MOB)

Household travel survey (EDGT)

Enterprise census (SIRENE)

Address database (BD-TOPO)

Synthetic travel demand

Population census (RP)

Income data (FiLoSoFi)

Commuting data (RP-MOB)

Household travel survey (EDGT)

Enterprise census (SIRENE)

Address database (BD-TOPO)

Person ID    

Age

Gender

Home (X,Y)

1

43

male

(65345, ...)

2

24

female

(65345, ...)

3

9

female

(65345, ...)

Synthetic travel demand

Population census (RP)

Income data (FiLoSoFi)

Commuting data (RP-MOB)

Household travel survey (EDGT)

Enterprise census (SIRENE)

Address database (BD-TOPO)

Person ID    

Activity

Start

End

Loc.

523

home

08:00

(x,y)

523

work

08:55

18:12

(x,y)

523

shop

19:10

19:25

(x,y)

523

home

19:40

(x,y)

Synthetic travel demand

Population census (RP)

Income data (FiLoSoFi)

Commuting data (RP-MOB)

Household travel survey (EDGT)

Enterprise census (SIRENE)

OpenStreetMap

GTFS (SYTRAL / SNCF)

Address database (BD-TOPO)

Synthetic travel demand

Population census (RP)

Income data (FiLoSoFi)

Commuting data (RP-MOB)

Household travel survey (EDGT)

Enterprise census (SIRENE)

OpenStreetMap

GTFS (SYTRAL / SNCF)

Address database (BD-TOPO)

Synthetic travel demand

Population census (RP)

Income data (FiLoSoFi)

Commuting data (RP-MOB)

National HTS (ENTD)

Enterprise census (SIRENE)

OpenStreetMap

GTFS (SYTRAL / SNCF)

Address database (BD-TOPO)

Synthetic travel demand

EDGT

Population census (RP)

Income data (FiLoSoFi)

Commuting data (RP-MOB)

Enterprise census (SIRENE)

OpenStreetMap

GTFS (SYTRAL / SNCF)

Address database (BD-TOPO)

Synthetic travel demand

Open
Data

Open
Software

+

=

Reproducible research

Integrated testing

National HTS (ENTD)

EDGT

Population census (RP)

Income data (FiLoSoFi)

Commuting data (RP-MOB)

Enterprise census (SIRENE)

OpenStreetMap

GTFS (SYTRAL / SNCF)

Address database (BD-TOPO)

Synthetic travel demand

Open
Data

Open
Software

+

=

Reproducible research

Integrated testing

National HTS (ENTD)

EDGT

Current use cases

Nantes

  • Noise modeling

Current use cases

Lille

  • Park & ride applications
  • Road pricing

Current use cases

Toulouse

  • Placement and use of shared offices

Current use cases

Rennes

  • Micromobility simulation

Current use cases

Paris / Île-de-France

  • Scenario development for sustainable urban transformation
     
  • New mobility services

    Mahdi Zargayouna (GRETTIA / Univ. Gustave Eiffel)
    Nicolas Coulombel (LVMT / ENPC)

Current use cases

Paris / Île-de-France

  • Cycling simulation

Current use cases

Paris / Île-de-France

  • Simulation of dynamic mobility services
     
  • Fleet control through reinforcement learning

Current use cases

Lyon (IRT SystemX)

  • Low-emission first/last mile logistics

Current use cases

Current use cases

Balac, M., Hörl, S. (2021) Synthetic population for the state of California based on open-data: examples of San Francisco Bay area and San Diego County, presented at 100th Annual Meeting of the Transportation Research Board, Washington, D.C.

Sallard, A., Balac, M., Hörl, S. (2021) Synthetic travel demand for the Greater São Paulo Metropolitan Region, based on open data, Under Review

Sao Paulo, San Francisco Bay area, Los Angeles five-county area, Switzerland, Montreal, Quebec City, Jakarta, Casablanca, ...

Emissions in Paris

Grand Paris Express

Automated taxis in Paris

Automated taxis in Paris

IV. Logistics

Photo by Tom Fisk from Pexels

LEAD Project

Low-emission Adaptive last-mile logistics supporting on-demand economy through Digital Twins

  • H2020 Project from 2020 to 2023
     
  • Six living labs with different innovative logistics concepts
    • Lyon, The Hague, Madrid, Budapest, Porto, Oslo
    • One partner for implementation and one for research each
       
  • Development of a generic modeling library for last-mile logistics scenario simulation and analysis

Lyon Living Lab

  • Peninsula Confluence between Saône and Rhône
     
  • Interesting use case as there are limited access points
     
  • Implementation of an urban consolidation center (UCC) to collect the flow of goods and organize last-mile distribution
    • using cargo-bikes
    • using electric robots
    • and others
       
  • Analysis and modeling through
    • Flow estimation through cameras
    • Simulation of future scenarios
       
  • Focus on parcel deliveries due to data availability

Modeling methodology

Agent-based simulation of Lyon

Demand in parcel deliveries

Distribution by operators

KPI Calculation

  • Main question: What is the impact on traffic and population of implementing an Urban Consolidation Center in Confluence?
     
  • Focus on B2C parcel deliveries due to data availability

Methodology: Parcel demand

Synthetic population

+

Synthetic population

Out-of-home purchase survey
Achats découplés des ménages

Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.

Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.

Methodology: Parcel demand

Synthetic population

+

Synthetic population

Out-of-home purchase survey
Achats découplés des ménages

Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.

Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.

Methodology: Parcel demand

Synthetic population

+

Synthetic population

Out-of-home purchase survey
Achats découplés des ménages

Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.

Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.

Methodology: Parcel demand

Synthetic population

+

Synthetic population

Out-of-home purchase survey
Achats découplés des ménages

Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.

Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.

Methodology: Parcel demand

Synthetic population

Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.

+

Synthetic population

Out-of-home purchase survey
Achats découplés des ménages

Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.

Iterative proportional fitting (IFP)

  • Based on synthetic population, find average number of purchases delivered to a household defined by socioprofesional class, age of the reference person and household size per day.
\mu_{a,h,s} = d_{s} \cdot \frac{w_{a,h,s}}{365}

Methodology: Parcel demand

Synthetic population

Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.

+

Synthetic population

Out-of-home purchase survey
Achats découplés des ménages

Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.

Maximum entropy approach

  • We now the average number of parcels, but we do not now the distribution of the number of parcels for a household on an average day.
     
  • We know it must be non-negative, and we know the mean.
     
  • Without additional data, we assume maximum entropy distribution, which is Exponential in this case.
F(N \leq n) = \text{Pois}(\mu)

Methodology: Parcel demand

Synthetic population

Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.

+

Synthetic population

Out-of-home purchase survey
Achats découplés des ménages

Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.

Methodology: Parcel demand

Synthetic population

Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.

+

Synthetic population

Out-of-home purchase survey
Achats découplés des ménages

Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.

Methodology: Parcel demand

Synthetic population

Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.

+

Synthetic population

Out-of-home purchase survey
Achats découplés des ménages

Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.

Methodology: Parcel demand

Synthetic population

Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.

+

Synthetic population

Out-of-home purchase survey
Achats découplés des ménages

Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.

Presence of household members

Methodology: Route optimization

Using a heursitic routing solver, an optimal distribution scheme per distribution center is obtained to arrive at a lower bound estimate for the distance covered for the deliveries.

JSprit

First case study

Hörl, S. and J. Puchinger (2021) From synthetic population to parcel demand: Modeling pipeline and case study for last-mile deliveries in Lyon, Working paper.

Solve VRP-TW based on generated parcels and household presence

JSprit

First case study

Hörl, S. and J. Puchinger (2021) From synthetic population to parcel demand: Modeling pipeline and case study for last-mile deliveries in Lyon, Working paper.

Solve VRP-TW based on generated parcels and household presence

JSprit

Scaling up: City-wide baseline

Using shares of customer preference, parcels are assigned to operators and the closest distribution centers.

SIRENE: Delivery centers

Using shares of customer preference, parcels are assigned to operators and the closest distribution centers.

SIRENE: Delivery centers

Assignment of parcels to operators based on customer preference survey (sendcloud)

Scaling up: City-wide baseline

Using shares of customer preference, parcels are assigned to operators and the closest distribution centers.

SIRENE: Delivery centers

Assignment of parcels to operators based on customer preference survey (sendcloud)

Scaling up: City-wide baseline

Scaling up: City-wide baseline

  • Allows us to cut out a better baseline scenario for Confluence

First main result: Estimate of the total distance driven for parcel deliveries in Lyon (by the most frequent operators).

KPI Calculation

GHG/PM Emissions: Simulation based on Hbefa database with detailed driving conditions (cold start, current speed, ...)


(Alternative in LEAD: COPERT)

Noise Emissions: Simulation simulates noise emissions and emissions to arrive at exposure values

Aggregation

  • Global emissions are summed up over the territory (CO2)
  • Local emissions need to be looked at in terms of exposure (PM)
  • Noise is local by definition, impact is calculated in terms of exposure (of the population) and expected social cost (in EUR)

Questions?

Use cases for multi-agent simulation in passenger and freight transport

By Sebastian Hörl

Use cases for multi-agent simulation in passenger and freight transport

Paris School of Economics, 7 February 2022

  • 681