Scratch slides for deeplearning.ai

2024-02-29 AGI Builders meetup

RAG recap

  • Retrieve most relevant data
  • Augment query with context
  • Generate response

A solution to limited context windows

You have to be selective

and that's tricky

Vector embeddings

Turning words into numbers

Search by meaning

Hybrid approaches

What is LlamaIndex?

llamaindex.ai

  • OSS libraries in Python and TypeScript
  • LlamaParse - PDF parsing as a service
  • LlamaCloud - managed ingestion service

Supported LLMs

Basic ingestion

documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)

LlamaHub

Loading

documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)

Ingestion pipeline

# create the pipeline with transformations
pipeline = IngestionPipeline(
    transformations=[
        SentenceSplitter(chunk_size=25, chunk_overlap=0),
        TitleExtractor(),
        OpenAIEmbedding(),
    ]
)

# run the pipeline
nodes = pipeline.run(
	documents=SimpleDirectoryReader("data").load_data()
)
index = VectorStoreIndex(nodes)

Ingestion caching

# save
pipeline.persist("./pipeline_storage")

# load and restore state
new_pipeline = IngestionPipeline(
    transformations=[
        SentenceSplitter(chunk_size=25, chunk_overlap=0),
        TitleExtractor(),
    ],
)
new_pipeline.load("./pipeline_storage")

# will run instantly due to the cache
nodes = pipeline.run(
	documents=SimpleDirectoryReader("data").load_data()
)
index = VectorStoreIndex(nodes)

Supported embedding models

  • OpenAI 
  • Langchain 
  • CohereAI 
  • Qdrant FastEmbed 
  • Gradient 
  • Azure OpenAI
  • Elasticsearch 
  • Clarifai
  • LLMRails 
  • Google PaLM 
  • Jina 
  • Voyage 

...plus everything on Hugging Face!

VectorStoreIndex

KnowledgeGraphIndex

Supported Vector databases

  • Apache Cassandra
  • Astra DB
  • Azure Cognitive Search
  • Azure CosmosDB
  • ChatGPT Retrieval Plugin
  • Chroma
  • DashVector
  • Deeplake
  • DocArray
  • DynamoDB
  • Elasticsearch
  • FAISS
  • LanceDB
  • Lantern
  • Metal
  • MongoDB Atlas
  • MyScale
  • Milvus / Zilliz
  • Neo4jVector
  • OpenSearch
  • Pinecone
  • Postgres
  • pgvecto.rs
  • Qdrant
  • Redis
  • Rockset
  • SingleStore
  • Supabase
  • Tair
  • TencentVectorDB
  • Timescale
  • Typesense
  • Weaviate

Querying

We don't talk about prompting (much)

See prompts

query_engine = index.as_query_engine()
prompts_dict = query_engine.get_prompts()

Modify prompts

# shakespeare!
qa_prompt_tmpl_str = (
    "Context information is below.\n"
    "---------------------\n"
    "{context_str}\n"
    "---------------------\n"
    "Given the context information and not prior knowledge, "
    "answer the query in the style of a Shakespeare play.\n"
    "Query: {query_str}\n"
    "Answer: "
)
qa_prompt_tmpl = PromptTemplate(qa_prompt_tmpl_str)

query_engine.update_prompts(
    {"response_synthesizer:text_qa_template": qa_prompt_tmpl}
)

Basic querying

query_engine = index.as_query_engine()
response = query_engine.query(
  "What is the capital of South Dakota?"
)
print(response)

Configure retriever

index = VectorStoreIndex.from_documents(documents)

retriever = VectorIndexRetriever(
    index=index,
    similarity_top_k=5,
)

response_synthesizer = get_response_synthesizer(
    response_mode="tree_summarize",
)

query_engine = RetrieverQueryEngine(
    retriever=retriever,
    response_synthesizer=response_synthesizer,
)

response = query_engine.query(
  "What is the capital of South Dakota?"
)
print(response)

Configure synthesizer

index = VectorStoreIndex.from_documents(documents)

retriever = VectorIndexRetriever(
    index=index,
    similarity_top_k=5,
)

response_synthesizer = get_response_synthesizer(
    response_mode="tree_summarize",
)

query_engine = RetrieverQueryEngine(
    retriever=retriever,
    response_synthesizer=response_synthesizer,
)

response = query_engine.query(
  "What is the capital of South Dakota?"
)
print(response)

Create query engine

index = VectorStoreIndex.from_documents(documents)

retriever = VectorIndexRetriever(
    index=index,
    similarity_top_k=5,
)

response_synthesizer = get_response_synthesizer(
    response_mode="tree_summarize",
)

query_engine = RetrieverQueryEngine(
    retriever=retriever,
    response_synthesizer=response_synthesizer,
)

response = query_engine.query(
  "What is the capital of South Dakota?"
)
print(response)

Advanced query strategies

SubQuestionQueryEngine

SubQuestionQueryEngine

# setup base query engine as tool
query_engine_tools = [
    QueryEngineTool(
        query_engine=simple_query_engine,
        metadata=ToolMetadata(
            name="pg_essay",
            description="Paul Graham essay on What I Worked On",
        ),
    ),
]

query_engine = SubQuestionQueryEngine.from_defaults(
    query_engine_tools=query_engine_tools
)

Problems with precision

Small-to-big retrieval

Small-to-big retrieval

query_engine = index.as_query_engine(
    similarity_top_k=2,
    node_postprocessors=[
        MetadataReplacementPostProcessor(target_metadata_key="window")
    ],
)
response = query_engine.query(
    "What happened on August 3rd?"
)
print(response)

Precision through preprocessing

Metadata filtering

query_engine = index.as_query_engine(
    filters=MetadataFilters(
        filters=[ExactMatchFilter(key="year", value="2021")]
    )
)
response = query_engine.query(
    "What was the annual profit in 2021?"
)
print(response)

Auto-retrieval

vector_store_info = VectorStoreInfo(
    content_info="Brief summary of a movie",
    metadata_info=[
        MetadataInfo(
            name="year",
            description="The year the movie was released",
            type="integer",
        ),
        MetadataInfo(
            name="director",
            description="The name of the movie director",
            type="string",
        ),
    ],
)
retriever = VectorIndexAutoRetriever(
    index, vector_store_info=vector_store_info
)

Metadata support

  • Apache Cassandra
  • Astra DB
  • Chroma
  • DashVector
  • Deeplake
  • DocArray
  • Elasticsearch
  • LanceDB
  • Lantern
  • Metal
  • MongoDB Atlas
  • MyScale
  • Milvus / Zilliz
  • OpenSearch
  • Pinecone
  • Postgres
  • pgvecto.rs
  • Qdrant
  • Redis
  • Simple
  • SingleStore
  • Supabase
  • Tair
  • TencentVectorDB
  • Timescale
  • Typesense
  • Weaviate

Hybrid Search

Hybrid search

query_engine = index.as_query_engine(
  vector_store_query_mode="hybrid",
  similarity_top_k=2,
  alpha=0.5
)
response = query_engine.query(
    "What did the author do growing up?",
)

Hybrid search support

  • Azure Cognitive Search
  • Elasticsearch
  • Lantern
  • MyScale
  • Pinecone
  • Postgres
  • pgvecto.rs
  • TencentVectorDB
  • Weaviate

Complex document strategies

PandasQueryEngine

reader = PyMuPDFReader()

table_dfs = #...parse tables into pandas structures...

df_query_engines = [
    PandasQueryEngine(table_df)
    for table_df in table_dfs
]

IndexNodes

# define index nodes
summaries = [
    (
        "This node provides information about the world's richest billionaires"
        " in 2023"
    ),
    (
        "This node provides information on the number of billionaires and"
        " their combined net worth from 2000 to 2023."
    ),
]

df_nodes = [
    IndexNode(text=summary, index_id=f"pandas{idx}")
    for idx, summary in enumerate(summaries)
]

df_id_query_engine_mapping = {
    f"pandas{idx}": df_query_engine
    for idx, df_query_engine in enumerate(df_query_engines)
}

Sub-Retriever

doc_nodes = service_context.node_parser.get_nodes_from_documents(docs)

vector_index = VectorStoreIndex(doc_nodes + df_nodes)
vector_retriever = vector_index.as_retriever(similarity_top_k=1)

RecursiveRetriever

recursive_retriever = RecursiveRetriever(
    "vector",
    retriever_dict={"vector": vector_retriever},
    query_engine_dict=df_id_query_engine_mapping,
)

response_synthesizer = get_response_synthesizer()

query_engine = RetrieverQueryEngine.from_args(
    recursive_retriever, response_synthesizer=response_synthesizer
)
response = query_engine.query(
    "What's the net worth of the second richest billionaire in 2023?"
)

Text to SQL

SQLDatabase

engine = create_engine("sqlite:///:memory:")
sql_database = SQLDatabase(
  engine, 
  include_tables=["city_stats"]
)

Querying SQLDatabase

query_engine = NLSQLTableQueryEngine(
    sql_database=sql_database,
    tables=["city_stats"],
)
query_str = "Which city has the highest population?"
response = query_engine.query(query_str)

SQLTableRetrieverQueryEngine

table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = [
    (SQLTableSchema(table_name="city_stats"))
]

obj_index = ObjectIndex.from_objects(
    table_schema_objs,
    table_node_mapping,
    VectorStoreIndex,
)
query_engine = SQLTableRetrieverQueryEngine(
    sql_database, obj_index.as_retriever(similarity_top_k=1)
)

Manually add table metadata

city_stats_text = (
    "This table gives information regarding the population and country of a"
    " given city. The user will query with codewords, where 'foo' corresponds"
    " to population and 'bar'corresponds to city."
)

table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = [
    (SQLTableSchema(table_name="city_stats", context_str=city_stats_text))
]

Multi-document agents

SECinsights.ai

Create query engines

documents = SimpleDirectoryReader("2020").load_data()
index2020 = VectorStoreIndex.from_documents(documents)
query_engine_2020 = index2020.as_query_engine()

documents = SimpleDirectoryReader("2021").load_data()
index2021 = VectorStoreIndex.from_documents(documents)
query_engine_2021 = index2021.as_query_engine()

documents = SimpleDirectoryReader("2022").load_data()
index2022 = VectorStoreIndex.from_documents(documents)
query_engine_2022 = index2022.as_query_engine()

Define tools

query_engine_tools = [
  QueryEngineTool(
    query_engine=query_engine_2020,
    metadata=ToolMetadata(
      name="2020_facts_tool",
      description=(
        "Contains facts about filings "
        "about the company from the year 2020"
      ),
    ),
  ),
  # ... etc ...
]

Define agent

function_llm = OpenAI(model="gpt-4")
agent = OpenAIAgent.from_tools(
  query_engine_tools,
  llm=function_llm,
  system_prompt=f"""\
You are a specialized agent designed to answer queries about financial filings.
You must ALWAYS use at least one of the tools provided when answering a question; do NOT rely on prior knowledge.\
""",
)

Composability

"2024 is the year of LlamaIndex in production"

– Shawn "swyx" Wang, Latent.Space podcast

npx create-llama

LlamaIndex in production

  • Datastax
  • OpenBB
  • Springworks
  • Gunderson Dettmer
  • Jasper
  • Replit

 

  • Red Hat
  • Clearbit
  • Berkeley
  • W&B
  • Instabase
  • Adyen

Case study:

Gunderson Dettmer

Recap

  • What LlamaIndex is
    • Orchestration
    • LlamaParse
    • LlamaCloud
    • A registry of software
    • A path to production
  • Stages of RAG
    • Ingestion
    • Indexing
    • Storing
    • Querying

Advanced retrieval strategies

  • SubQuestionQueryEngine
  • Small-to-big retrieval
  • Metadata filtering
  • Hybrid search
  • Recursive retrieval
  • Text-to-SQL
  • Multi-document agents

What next?

Follow me on twitter: @seldo

Scratch slides for DeepLearning

By seldo

Scratch slides for DeepLearning

  • 519