Deep dive into

llama-agents

2024-07-19 YouTube

Example 1: agentic RAG with a tool service

import os

os.environ["OPENAI_API_KEY"] = "sk-proj-..."
mkdir -p 'data/10k/'
wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'
wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'

Set environment

Fetch the sample data

from llama_index.core import (
    SimpleDirectoryReader,
    VectorStoreIndex,
    StorageContext,
    load_index_from_storage,
)
from llama_agents import (
    AgentService,
    ToolService,
    LocalLauncher,
    MetaServiceTool,
    ControlPlaneServer,
    SimpleMessageQueue,
    AgentOrchestrator,
)

from llama_index.core.agent import FunctionCallingAgentWorker
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from llama_index.llms.openai import OpenAI
import logging

Import dependencies

try:
    storage_context = StorageContext.from_defaults(persist_dir="./storage/lyft")
    lyft_index = load_index_from_storage(storage_context)

    storage_context = StorageContext.from_defaults(persist_dir="./storage/uber")
    uber_index = load_index_from_storage(storage_context)

    index_loaded = True
except:
    index_loaded = False
    
if not index_loaded:
    # load data
    lyft_docs = SimpleDirectoryReader(
        input_files=["./data/10k/lyft_2021.pdf"]
    ).load_data()
    uber_docs = SimpleDirectoryReader(
        input_files=["./data/10k/uber_2021.pdf"]
    ).load_data()

    # build index
    lyft_index = VectorStoreIndex.from_documents(lyft_docs)
    uber_index = VectorStoreIndex.from_documents(uber_docs)

    # persist index
    lyft_index.storage_context.persist(persist_dir="./storage/lyft")
    uber_index.storage_context.persist(persist_dir="./storage/uber")

Load or create an index per company

lyft_engine = lyft_index.as_query_engine(similarity_top_k=3)
uber_engine = uber_index.as_query_engine(similarity_top_k=3)

query_engine_tools = [
    QueryEngineTool(
        query_engine=lyft_engine,
        metadata=ToolMetadata(
            name="lyft_10k",
            description=(
                "Provides information about Lyft financials for year 2021. "
                "Use a detailed plain text question as input to the tool."
            ),
        ),
    ),
    QueryEngineTool(
        query_engine=uber_engine,
        metadata=ToolMetadata(
            name="uber_10k",
            description=(
                "Provides information about Uber financials for year 2021. "
                "Use a detailed plain text question as input to the tool."
            ),
        ),
    ),
]

Create query engines and turn them into tools

# create our multi-agent framework components
message_queue = SimpleMessageQueue()
control_plane = ControlPlaneServer(
    message_queue=message_queue,
    orchestrator=AgentOrchestrator(llm=OpenAI(model="gpt-4o")),
)

Set up our llama-agents services

# define Tool Service
tool_service = ToolService(
    message_queue=message_queue,
    tools=query_engine_tools,
    running=True,
    step_interval=0.5,
)

Define our tool service

# define meta-tools here
meta_tools = [
    await MetaServiceTool.from_tool_service(
        t.metadata.name,
        message_queue=message_queue,
        tool_service=tool_service,
    )
    for t in query_engine_tools
]

Define meta-tools

# define Agent and agent service
worker1 = FunctionCallingAgentWorker.from_tools(
    meta_tools,
    llm=OpenAI(),
)
agent1 = worker1.as_agent()
agent_server_1 = AgentService(
    agent=agent1,
    message_queue=message_queue,
    description="Used to answer questions over Uber and Lyft 10K documents",
    service_name="uber_lyft_10k_analyst_agent",
)

Create an agent with all our tools

logging.getLogger("llama_agents").setLevel(logging.INFO)

launcher = LocalLauncher(
    [agent_server_1, tool_service],
    control_plane,
    message_queue,
)

query_str = "What are the risk factors for Uber?"
result = launcher.launch_single(query_str)

print(result)

Launch agent locally for debugging

The risk factors for Uber include potential harm to their business due to data security breaches, liabilities from breaches experienced by acquired companies, challenges in introducing new products and features, risks related to criminal or dangerous activities by platform users, potential safety incidents impacting reputation and financials, uncertainties in regulatory environments, and complexities related to compliance with Transportation Network Company regulations and driver classification laws.
query_str = "What was Lyft's revenue growth in 2021?"
result = launcher.launch_single(query_str)

print(result)

Ask a second question

Lyft's revenue increased by 36% in 2021 compared to the prior year.

Example 2:

query rewriting

Thanks!

Follow me on Twitter:

@seldo

Please don't add me on LinkedIn.

llama-agents deep dive

By seldo

llama-agents deep dive

  • 298