### Acute Triangles, Convex Quadrilaterals, Flag Means, and More

Clayton Shonkwiler

http://shonkwiler.org

09.09.17

/denton17

this talk!

Jason Cantarella

U. of Georgia

Tom Needham

Ohio State

Gavin Stewart

NYU

Laney Bowden

CSU

Andrea Haynes

CSU

Aaron Shukert

CSU

### Earlier versions

W. S. B. Woolhouse, Educational Times 18 (1865), p. 189

J. J. Sylvester, Educational Times 18 (1865), p. 68

W. S. B. Woolhouse, The Lady's and Gentleman's Diary 158 (1861), p. 76

### Random Points on an Infinite Plane

Probability $$p$$

$$p$$

$$p$$

$$p$$

$$p$$

Uh oh!

Suppose $$AB$$ is the longest side. Then

$$\mathbb{P}(\text{obtuse})=\frac{\pi/8}{\pi/3-\sqrt{3}/4} \approx 0.64$$

But if $$AB$$ is the second longest side,

$$\mathbb{P}(\text{obtuse}) = \frac{\pi/2}{\pi/3+\sqrt{3}/2} \approx 0.82$$

Proposition [Portnoy]: If the distribution of $$(x_1,y_1,x_2,y_2,x_3,y_3)\in\mathbb{R}^6$$ is spherically symmetric (for example, a standard Gaussian), then

$$\mathbb{P}(\text{obtuse}) = \frac{3}{4}$$

Consider the vertices $$(x_1,y_1),(x_2,y_2),(x_3,y_3)$$ as determining a single point in $$\mathbb{R}^6$$.

For example, when the vertices of the triangle are chosen from independent, identically-distributed Gaussians on $$\mathbb{R}^2$$.

Choose three vertices uniformly in the disk:

$$\mathbb{P}(\text{obtuse})=\frac{9}{8}-\frac{4}{\pi^2}\approx 0.7197$$

### Restricted domain?

Choose three vertices uniformly in the square:

$$\mathbb{P}(\text{obtuse})=\frac{97}{150}-\frac{\pi}{40}\approx 0.7252$$

reentrant

J.J. Sylvester, Educational Times, April 1864

### Sylvester and Cayley’s solution

J.J. Sylvester, Phil. Trans. R. Soc. London  154 (1864), p. 654, footnote 64(b)

W.S.B. Woolhouse, Mathematical Questions with Their Solutions VII (1867), p. 81

### A. De Morgan’s solution

A. De Morgan, Trans. Cambridge Phil. Soc.  XI (1871), pp. 147–148

W.S.B. Woolhouse, Mathematical Questions with Their Solutions  VI (1866), p. 52

C.M. Ingleby, Mathematical Questions with Their Solutions V (1865), p. 82

### G. C. De Morgan’s solution

G.C. De Morgan, Mathematical Questions with Their Solutions V (1865), p. 109

### W.S.B. Woolhouse’s solution

W.S.B. Woolhouse, Mathematical Questions with Their Solutions VI (1866), p. 52

### W.S.B. Woolhouse’s solutions

W.S.B. Woolhouse, Mathematical Questions with Their Solutions  VIII (1868), p. 105

$$\mathbb{P}(\text{reflex})=\frac{1}{3}$$

$$\mathbb{P}(\text{reflex})=\frac{35}{12\pi^2}\approx 0.296$$

Theorem [Blaschke, 1917]

$$\frac{35}{12\pi^2}\leq\mathbb{P}(\text{reflex})\leq\frac{1}{3}$$

### J.M. Wilson’s solution

J.M. Wilson, Mathematical Questions with Their Solutions  V (1866), p. 81

### We need measure theory!

W.A. Whitworth, Mathematical Questions with Their Solutions  VIII (1868), p. 36

Report on J.J. Sylvester’s presentation of his paper “On a Special Class of Questions on the Theory of Probabilities” to the British Association for the Advancement of Science, 1865

### Random polygons?

Are these questions really about choosing random points, or are they actually about choosing random polygons?

How would you choose a polygon “at random”?

— Stephen Portnoy, Statistical Science 9 (1994), 279–284

### Geometric idea

The space of all $$n$$-gons should be a (preferably compact) manifold $$P_n$$ with a transitive isometry group. We should use the left-invariant metric on $$P_n$$, scaled so vol$$(P_n)=1$$. Then the Riemannian volume form induced by this metric is a natural probability measure on $$P_n$$, and we should compute the volume of the subset of $$n$$-gons satisfying our favorite condition.

Spoiler: $$P_n \simeq G_2\mathbb{R}^n$$

### Polygons and Stiefel manifolds

Let $$e_1, \ldots , e_n$$ be the edges of a planar $$n$$-gon with total perimeter 2. Choose $$z_1, \ldots , z_n$$ so that $$z_k^2 = e_k$$. Let $$z_k = a_k + i b_k$$.

The polygon is closed $$\Leftrightarrow e_1 + \ldots + e_n = 0$$

$$\sum e_k =\sum z_k^2 = \left(\sum a_k^2 - \sum b_k^2\right) + 2i \sum a_k b_k$$

The polygon is closed $$\Leftrightarrow \|a\|=\|b\|$$ and $$a \bot b$$

Since $$\sum |e_k| = \sum a_k^2 + \sum b_k^2 = \|a\|^2 + \|b\|^2$$, we see that $$(a,b) \in V_2(\mathbb{R}^n)$$, the Stiefel manifold of 2-frames in $$\mathbb{R}^n$$.

### Polygons and Grassmannians

Proposition: Rotating $$(a,b)$$ in the plane it spans rotates the corresponding $$n$$-gon twice as fast.

Corollary [Hausmann–Knutson]

The Grassmannian $$G_2(\mathbb{R}^n)$$ is (almost) a $$2^n$$-fold covering of the space of planar $$n$$-gons of perimeter 2.

### The symmetric measure

Definition [w/ Cantarella & Deguchi]

The symmetric measure on $$n$$-gons of perimeter 2 up to translation and rotation is the pushforward of Haar measure on $$G_2(\mathbb{R}^n)$$.

Therefore, $$SO(n)$$ acts transitively on $$n$$-gons and preserves the symmetric measure.

Polygons in $$\mathbb{R}^3$$ correspond to points in $$G_2(\mathbb{C}^n)$$ and the analog of the squaring map is the Hopf map.

Polygons in this model have the same scaling behavior as ring polymers like bacterial DNA.

This model was used by the Tezuka lab to verify the synthesis of novel polymer topologies, including $$K_{3,3}$$.

### Triangles

A triangle corresponds to an element of $$G_2(\mathbb{R}^3)$$, which is a plane in $$\mathbb{R}^3$$ with ON basis $$(a,b)$$...

or, equivalently, the line through

$$p=a\times b$$

\begin{bmatrix} | & | \\ a & b \\ | & | \end{bmatrix} = \begin{bmatrix} - \sqrt{e_1} - \\ - \sqrt{e_2} - \\ - \sqrt{e_3} - \end{bmatrix}
$\begin{bmatrix} | & | \\ a & b \\ | & | \end{bmatrix} = \begin{bmatrix} - \sqrt{e_1} - \\ - \sqrt{e_2} - \\ - \sqrt{e_3} - \end{bmatrix}$

so

\begin{bmatrix} x \\ y \\ z \end{bmatrix} = p = a \times b = \begin{bmatrix} \sqrt{e_2} \times \sqrt{e_3} \\ \sqrt{e_3} \times \sqrt{e_1} \\ \sqrt{e_1} \times \sqrt{e_2} \end{bmatrix} = \begin{bmatrix} \sqrt{\|e_2\| \|e_3\|}\sin\frac{\theta_{23}}{2} \\ \sqrt{\|e_3\| \|e_1\|}\sin\frac{\theta_{31}}{2} \\ \sqrt{\|e_1\| \|e_2\|}\sin\frac{\theta_{12}}{2} \end{bmatrix}
$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = p = a \times b = \begin{bmatrix} \sqrt{e_2} \times \sqrt{e_3} \\ \sqrt{e_3} \times \sqrt{e_1} \\ \sqrt{e_1} \times \sqrt{e_2} \end{bmatrix} = \begin{bmatrix} \sqrt{\|e_2\| \|e_3\|}\sin\frac{\theta_{23}}{2} \\ \sqrt{\|e_3\| \|e_1\|}\sin\frac{\theta_{31}}{2} \\ \sqrt{\|e_1\| \|e_2\|}\sin\frac{\theta_{12}}{2} \end{bmatrix}$

### Translating to side lengths

\begin{bmatrix} x \\ y \\ z \end{bmatrix}
$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$
z^2 = a b \cos^2\frac{\gamma}{2}= \frac{1}{2} a b (1+\cos \gamma)
$z^2 = a b \cos^2\frac{\gamma}{2}= \frac{1}{2} a b (1+\cos \gamma)$
= \frac{1}{2} ab \left(1+\frac{a^2+b^2-c^2}{2ab}\right) = \frac{(a+b)^2-c^2}{4}
$= \frac{1}{2} ab \left(1+\frac{a^2+b^2-c^2}{2ab}\right) = \frac{(a+b)^2-c^2}{4}$
= \frac{(2-c)^2-c^2}{4} = \frac{4-4c}{4} = 1-c
$= \frac{(2-c)^2-c^2}{4} = \frac{4-4c}{4} = 1-c$
= \begin{bmatrix} \sqrt{\|e_2\| \|e_3\|}\sin\frac{\theta_{23}}{2} \\ \sqrt{\|e_3\| \|e_1\|}\sin\frac{\theta_{31}}{2} \\ \sqrt{\|e_1\| \|e_2\|}\sin\frac{\theta_{12}}{2} \end{bmatrix}
$= \begin{bmatrix} \sqrt{\|e_2\| \|e_3\|}\sin\frac{\theta_{23}}{2} \\ \sqrt{\|e_3\| \|e_1\|}\sin\frac{\theta_{31}}{2} \\ \sqrt{\|e_1\| \|e_2\|}\sin\frac{\theta_{12}}{2} \end{bmatrix}$
= \begin{bmatrix} \sqrt{bc} \cos \frac{\alpha}{2} \\ \sqrt{ca} \cos \frac{\beta}{2} \\ \sqrt{ab} \cos \frac{\gamma}{2} \end{bmatrix}
$= \begin{bmatrix} \sqrt{bc} \cos \frac{\alpha}{2} \\ \sqrt{ca} \cos \frac{\beta}{2} \\ \sqrt{ab} \cos \frac{\gamma}{2} \end{bmatrix}$

Law of Cosines

Perimeter $$2$$

### Translating to side lengths

\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \sqrt{1-a} \\ \sqrt{1-b} \\ \sqrt{1-c} \end{bmatrix}
$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \sqrt{1-a} \\ \sqrt{1-b} \\ \sqrt{1-c} \end{bmatrix}$

### The transitive group

The rotations are natural transformations of the sphere, and the corresponding action on triangles is natural.

$$c=1-z^2$$ fixed

$$z$$ fixed

$$C(\theta) = (\frac{z^2+1}{2}\cos 2\theta, z \sin 2\theta)$$

The equal-area-in-equal-time parametrization of the ellipse

### Right triangles

The right triangles are exactly those satisfying

$$a^2+b^2=c^2$$  & permutations

Since $$a=1-x^2$$, etc., the right triangles are determined by the quartic

$$(1-x^2)^2+(1-y^2)^2=(1-z^2)^2$$  & permutations

$$x^2 + x^2y^2 + y^2 = 1$$,  etc.

### Obtuse triangles

$$\mathbb{P}(\text{obtuse})=\frac{1}{4\pi}\text{Area} = \frac{24}{4\pi} \int_R d\theta dz$$

But now $$C$$ has the parametrization

And the integral reduces to

### Solution to the pillow problem

By Stokes’ Theorem

$$\frac{6}{\pi} \int_R d\theta dz=\frac{6}{\pi}\int_{\partial R}z d\theta = \frac{6}{\pi}\left(\int_{z=0} zd\theta + \int_C zd\theta \right)$$

$$\left(\sqrt{\frac{1-y^2}{1+y^2}},y,y\sqrt{\frac{1-y^2}{1+y^2}}\right)$$

$$\frac{6}{\pi} \int_0^1 \left(\frac{2y}{1+y^4}-\frac{y}{1+y^2}\right)dy$$

Theorem [with Cantarella, Needham, Stewart]

With respect to the symmetric measure on triangles, the probability that a random triangle is obtuse is

$$\frac{3}{2}-\frac{3\ln 2}{\pi}\approx0.838$$

### Sylvester’s Four Point Problem

convex

reflex/reentrant

self-intersecting

### A discrete group action

A polygon corresponds to $$\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ \vdots & \vdots \\ a_n & v_n \end{bmatrix}$$, where $$(a_k + i b_k)^2 = e_k$$.

$$(a_k,b_k)\mapsto(-a_k,-b_k)$$ doesn’t change the polygon, so $$(\mathbb{Z}/2\mathbb{Z})^n$$ acts trivially on polygons.

$$S_n \le SO(n)$$ permutes rows and hence edges.

The hyperoctahedral group $$B_n = (\mathbb{Z}/2\mathbb{Z})^n \rtimes S_n = S_2 \wr S_n$$ acts by isometries on $$G_2(\mathbb{R}^n)$$ and permutes edges.

$$|B_n| = 2^n n!$$;         e.g., $$|B_3| = 2^3 3! = 48$$.

$$S_n \le SO(n)$$ permutes rows and hence edges.

$$S_n \le SO(n)$$ permutes rows and hence edges.

Proposition [with Cantarella, Needham, Stewart]

• The fundamental domain $$\mathcal{D}_n$$ of the $$B_n$$ action on $$G_2(\mathbb{R}^n)$$ consists of (certain lifts of) the convex $$n$$-gons in which all pairs of adjacent or opposite sides form oriented bases in the same class.
• The stabilizer of $$\mathcal{D}_4$$ has order 4, so $$G_2(\mathbb{R}^4)$$ is built from 96 isometric copies of $$\mathcal{D}_4$$.
• Each of these 96 cells consists of all convex, all reflex, or all self-intersecting quadrilaterals.
• $$\mathcal{D}_4$$ is path-connected.

Upshot: We can count how many elements of the permutation orbit of a single element of $$\mathcal{D}_4$$  are convex, reflex, and self-intersecting.

### Volumes via algebra

The (empirical) flag mean of $$\mathcal{D}_4$$.

\left\{\begin{bmatrix} a_{11} & b_{11} \\ a_{12} & b_{12} \\ \vdots & \vdots \\ a_{1n} & b_{1n} \end{bmatrix},\ldots , \begin{bmatrix} a_{k1} & b_{k1} \\ a_{k2} & b_{k2} \\ \vdots & \vdots \\ a_{kn} & b_{kn} \end{bmatrix}\right\}\subset G_2(\mathbb{R}^n)
$\left\{\begin{bmatrix} a_{11} & b_{11} \\ a_{12} & b_{12} \\ \vdots & \vdots \\ a_{1n} & b_{1n} \end{bmatrix},\ldots , \begin{bmatrix} a_{k1} & b_{k1} \\ a_{k2} & b_{k2} \\ \vdots & \vdots \\ a_{kn} & b_{kn} \end{bmatrix}\right\}\subset G_2(\mathbb{R}^n)$

The flag mean of

is (the plane spanned by) the first two left singular vectors of the matrix

\begin{bmatrix} a_{11} & b_{11} & a_{21} & b_{21} & \cdots & a_{k1} & b_{k1} \\ a_{12} & b_{12} & a_{22} & b_{22} & \cdots & a_{k2} & b_{k2} \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ a_{1n} & b_{1n} & a_{2n} & b_{2n} & \cdots & a_{kn} & b_{kn} \end{bmatrix}
$\begin{bmatrix} a_{11} & b_{11} & a_{21} & b_{21} & \cdots & a_{k1} & b_{k1} \\ a_{12} & b_{12} & a_{22} & b_{22} & \cdots & a_{k2} & b_{k2} \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ a_{1n} & b_{1n} & a_{2n} & b_{2n} & \cdots & a_{kn} & b_{kn} \end{bmatrix}$

### The symmetric group orbit

Theorem [with Cantarella, Needham, Stewart]

Convex, reflex, and self-intersecting quadrilaterals are all equiprobable.

### A partial generalization

Theorem [with Cantarella, Needham, Stewart]

With respect to any measure on $$n$$-gon space which is invariant under permuting edges, the fraction of convex $$n$$-gons is exactly $$\frac{2}{(n-1)!}$$.

### What is the least symmetric triangle?

Symmetric triangles

Isosceles

triangles

Degenerate

triangles

### The least symmetric triangle

Theorem [with Bowden, Haynes, Shukert]

The least symmetric triangle has side length ratio

1 : 3-\frac{1}{\sqrt{2}} : 3
$1 : 3-\frac{1}{\sqrt{2}} : 3$

### The least symmetric obtuse triangle

Theorem [with Bowden, Haynes, Shukert]

The least symmetric obtuse triangle has side length ratio

\sim 1 : 2.125 : 2.898
$\sim 1 : 2.125 : 2.898$

### The least symmetric acute triangle

Theorem [with Bowden, Haynes, Shukert]

The least symmetric acute triangle has side length ratio

\sim 1 : 1.221 : 1.408
$\sim 1 : 1.221 : 1.408$

### Polygons in space

Example Theorem [w/ Cantarella, Grosberg, Kusner]

The expected total curvature of a random space $$n$$-gon is exactly

$$\frac{\pi}{2}n + \frac{\pi}{4} \frac{2n}{2n-3}$$

Polygons in $$\mathbb{R}^3$$ correspond to points in $$G_2(\mathbb{C}^n)$$ and the analog of the squaring map is the Hopf map.

### Questions

• What is the average $$n$$-edge trefoil?

Observation [Needham]: The flag mean of the equilateral six-edge trefoils is

Theorem*: The flag mean of the positive Grassmannian is the convex regular $$n$$-gon.

• What is the most knotted $$n$$-gon?
• What is the flag mean good for in a polygons context?

Observation [Needham]: The flag mean of the equilateral six-edge positive trefoils is

• What is the probability that a random 273-gon is a trefoil knot?

Theorem [Baxter]

The expected number of vertices on the convex hull of a random planar $$n$$-gon is

2\sum_{k=1}^{n-1} \frac{1}{k}
$2\sum_{k=1}^{n-1} \frac{1}{k}$
2\sum_{k=1}^{n-1}\frac{\sqrt{\pi } \Gamma \left(\frac{k+1}{2}\right) \Gamma \left(\frac{n-1}{2}\right) \Gamma \left(\frac{n-k+1}{2} \right)}{k \Gamma \left(\frac{k}{2}\right) \Gamma \left(\frac{n}{2}+1\right) \Gamma \left(\frac{n-k}{2}\right)}
$2\sum_{k=1}^{n-1}\frac{\sqrt{\pi } \Gamma \left(\frac{k+1}{2}\right) \Gamma \left(\frac{n-1}{2}\right) \Gamma \left(\frac{n-k+1}{2} \right)}{k \Gamma \left(\frac{k}{2}\right) \Gamma \left(\frac{n}{2}+1\right) \Gamma \left(\frac{n-k}{2}\right)}$

### A Conjecture on Convex Hulls

Conjecture

The expected perimeter of the convex hull of a random planar $$n$$-gon is

2\sum_{k=1}^{n-1}\frac{\sqrt{\pi } \Gamma \left(\frac{k+1}{2}\right) \Gamma \left(\frac{n-1}{2}\right) \Gamma \left(\frac{n-k+1}{2} \right)}{k \Gamma \left(\frac{k}{2}\right) \Gamma \left(\frac{n}{2}+1\right) \Gamma \left(\frac{n-k}{2}\right)}
$2\sum_{k=1}^{n-1}\frac{\sqrt{\pi } \Gamma \left(\frac{k+1}{2}\right) \Gamma \left(\frac{n-1}{2}\right) \Gamma \left(\frac{n-k+1}{2} \right)}{k \Gamma \left(\frac{k}{2}\right) \Gamma \left(\frac{n}{2}+1\right) \Gamma \left(\frac{n-k}{2}\right)}$

Conjecture vs. sample average (100,000 samples)

Conjecture

The expected perimeter of the convex hull of a random planar $$n$$-gon is

# Thank you!

Funding: Simons Foundation

### References

Probability Theory of Random Polygons from the Quaternionic Perspective

J. Cantarella, T. Deguchi, and C. Shonkwiler

Communications on Pure and Applied Mathematics  67

(2014), 1658–1699

J. Cantarella, T. Needham, C. Shonkwiler, and G. Stewart

arXiv: 1702.01027

Spherical Geometry and the Least Symmetric Triangle

L. Bowden, A. Haynes, C. Shonkwiler, and A. Shukert

arXiv:1708.01559

The Expected Total Curvature of Random Polygons

J. Cantarella, A. Grosberg, R. Kusner, and C. Shonkwiler

American Journal of Mathematics 137 (2015), 411–438

#### The Geometry of Polygon Space

By Clayton Shonkwiler

# The Geometry of Polygon Space

Acute triangles, convex quadrilaterals, flag means, and more

• 625