Exercice 2:

Modèles direct et inverse

d'un robot plan 3R

Introduction à la Robotique

TD 1 - Modélisation Mécanique

  • Robot Plan 3R

  • 3 segments (l1, l2 et l3)
  • 3 pivots θ1 , θ2 , θ3 d'axe z
  • 3 DDL dans le plan (x, y, θz ) - coordonnées généralisées

  • 3 actionneurs1 , θ2 , θ3)      - coordonées articulaires

  • Modèle direct:  Trouver ( x, y, θf ) en connaissant 1 , θ2 , θ3)
  • Modèle inverse:  Trouver 1 , θ2 , θ3) en connaissant (x,y,θf )

Modèle géométrique direct

OE = (x, y, θz) =  f(θ1 , θ2 , θ3 )

R1'

R1

R2

R3

R2'

R1

R2

R3

R0

^0H_1 = \begin{pmatrix} \cos(\theta_1) & -\sin(\theta_1) & l_1 \cos(\theta_1) \\ \sin(\theta_1) & \cos(\theta_1) & l_1 \sin(\theta_1)\\ 0 & 0 & 1 \\ \end{pmatrix}
^1H_2 = \begin{pmatrix} \cos(\theta_2) & -\sin(\theta_2) & l_2 \cos(\theta_2) \\ \sin(\theta_2) & \cos(\theta_1) & l_2 \sin(\theta_2)\\ 0 & 0 & 1 \\ \end{pmatrix}
^2H_3 = \begin{pmatrix} \cos(\theta_3) & -\sin(\theta_3) & l_3 \cos(\theta_3) \\ \sin(\theta_3) & \cos(\theta_3) & l_3 \sin(\theta_3)\\ 0 & 0 & 1 \\ \end{pmatrix}
^0H_3 =\, ^0H_1 \times \,^1H_2 \times \,^2H_3
\begin{bmatrix} x\\ y\\ 1\\ \end{bmatrix} = \, ^0H_3 \times \begin{bmatrix} 0 \\ 0 \\ 1 \\ \end{bmatrix}
\begin{bmatrix} x\\ y\\ 1\\ \end{bmatrix} = \, ^0H_3 \times \, ^3E
\begin{array}{ccl} x &=& H_{\left[31\right]} \\ y &=& H_{\left[32\right]} \\ \end{array}
\begin{array}{ccl} x &=& H_{\left[31\right]} \\ y &=& H_{\left[32\right]} \\ \theta_z &=& \theta_1 +\theta_2 +\theta_3 \end{array}
^0\vec{OA} = l_1 \cos{(\theta_1)}\, \vec{x_o} + l_1 \sin{(\theta_1)}\, \vec{y_o}
^0\vec{AB} = l_2 \cos{(\theta_1+\theta_2)}\, \vec{x_o} + l_2 \sin{(\theta_1+\theta_2)}\,\vec{y_o}
^0\vec{BE} = l_3\cos{(\theta_1+\theta_2+\theta_3)}\, \vec{x_o} + l_3 \sin{(\theta_1+\theta_2+\theta_3)}\, \vec{y_o}
^0\vec{OE}= \begin{bmatrix} x \\ y\\ \end{bmatrix} = \begin{bmatrix} l_1\cos{(\theta_1)}+ l_2\cos{(\theta_1+\theta_2)}+ l_3\cos{(\theta_1+\theta_2+\theta_3)} \\ l_1\sin{(\theta_1)}+ l_2\sin{(\theta_1+\theta_2)}+ l_3\sin{(\theta_1+\theta_2+\theta_3)} \\ \end{bmatrix}

Avec des équations analytiques

\theta_z = \theta_1 +\theta_2 +\theta_3

Modèle géométrique inverse

  (θ1 , θ2 , θ3 ) = f -1(x, y, θz)

\left\{ \begin{array}{ccl} x &=& l_1\cos{(\theta_1)}+ l_2\cos{(\theta_1+\theta_2)}+ l_3\cos{(\theta_1+\theta_2+\theta_3)} \\ y &=& l_1\sin{(\theta_1)}+ l_2\sin{(\theta_1+\theta_2)}+ l_3\sin{(\theta_1+\theta_2+\theta_3)} \\ \theta_z &=& \theta_1+\theta_2+\theta_3 \end{array} \right.
\left\{ \begin{matrix} x - l_3\cos{(\theta_z)} &=& l_1\cos{(\theta_1)}+ l_2\cos{(\theta_1+\theta_2)} \\ y - l_3\sin{(\theta_z)} &=& l_1\sin{(\theta_1)}+ l_2\sin{(\theta_1+\theta_2)} \\ \end{matrix} \right.
\begin{matrix} (1) \\ (2)\\ \end{matrix}
(l_1\cos{(\theta_1)}+ l_2\cos{(\theta_1+\theta_2)} )^2 = \\
\begin{array} {lll} l_1^2\cos^2{(\theta_1)} + l_2^2\cos^2{(\theta_1+\theta_2)} + 2\, l_1\cos{(\theta_1)}\, l_2\cos{(\theta_1+\theta_2)} \end{array}
(1)^2 :

MGD

\left\{ \begin{matrix} x - l_3\cos{(\theta_z)} &=& l_1\cos{(\theta_1)}+ l_2\cos{(\theta_1+\theta_2)} \\ y - l_3\sin{(\theta_z)} &=& l_1\sin{(\theta_1)}+ l_2\sin{(\theta_1+\theta_2)} \\ \end{matrix} \right.
\begin{matrix} (1) \\ (2)\\ \end{matrix}
\begin{array} {lll} l_1^2\cos^2{(\theta_1)} + l_2^2\cos^2{(\theta_1+\theta_2)} + 2\, l_1\cos{(\theta_1)}\, l_2\cos{(\theta_1+\theta_2)} \end{array}
(1)^2 :
l_1^2\sin^2{(\theta_1)} + l_2^2\sin^2{(\theta_1+\theta_2)} + 2\, l_1\sin{(\theta_1)}\, l_2\sin{(\theta_1+\theta_2)}
(l_1\sin{(\theta_1)}+ l_2\sin{(\theta_1+\theta_2)} )^2 = \\
(2)^2 :
\left\{ \begin{matrix} x - l_3\cos{(\theta_z)} &=& l_1\cos{(\theta_1)}+ l_2\cos{(\theta_1+\theta_2)} \\ y - l_3\sin{(\theta_z)} &=& l_1\sin{(\theta_1)}+ l_2\sin{(\theta_1+\theta_2)} \\ \end{matrix} \right.
\begin{matrix} (1) \\ (2)\\ \end{matrix}
\begin{array} {lll} l_1^2\cos^2{(\theta_1)} + l_2^2\cos^2{(\theta_1+\theta_2)} + 2\, l_1\cos{(\theta_1)}\, l_2\cos{(\theta_1+\theta_2)} \end{array}
(1)^2 :
l_1^2\sin^2{(\theta_1)} + l_2^2\sin^2{(\theta_1+\theta_2)} + 2\, l_1\sin{(\theta_1)}\, l_2\sin{(\theta_1+\theta_2)}
(2)^2 :
(x - l_3\cos{\theta_z)^2 } + (y - l_3\sin{\theta_z)^2 } = l_1^2 + l_2^2 + 2l_1l_2\cos{(\theta_2)} \\
(1)^2 + (2)^2 :
\cos(a-b) = \cos(a)\cos(b)+\sin(a)\sin(b)
(x - l_3\cos{\theta_z)^2 } + (y - l_3\sin{\theta_z)^2 } = l_1^2 + l_2^2 + 2l_1l_2\cos{(\theta_2)} \\
(x - l_3\cos{\theta_z)^2 } + (y - l_3\sin{\theta_z)^2 } - l_1^2 - l_2^2 = 2l_1l_2\cos{(\theta_2)} \\
\left. \begin{array}{lcl} \cos{(\theta_2)} &=& \frac{(x - l_3\cos{\theta_z)^2 } + (y - l_3\sin{\theta_z)^2 } - l_1^2 - l_2^2 }{(2l_1l_2) } \\[6pt] \sin (\theta_2) &=& \pm \sqrt{1-\cos^2(\theta_2)} \\[6pt] \end{array} \right\} \arctan(.)
\Rightarrow \quad \theta_2 \quad ou \quad -\theta_2
\begin{array}{cl} S_1:& (\theta_1, \theta_2, \theta_3)\\ S_2:& (\theta'_1, -\theta_2, \theta'_3)\\ \end{array}

DEUX configurations avec deux θ2 opposés

\left\{ \begin{matrix} x - l_3\cos{(\theta_z)} &=& l_1\cos{(\theta_1)}+ l_2\cos{(\theta_1+\theta_2)} \\ y - l_3\sin{(\theta_z)} &=& l_1\sin{(\theta_1)}+ l_2\sin{(\theta_1+\theta_2)} \\ \end{matrix} \right.
\left\{ \begin{matrix} (l_1+l_2\cos\theta_2)\cos (\theta_1) - (l_2\sin\theta_2)\sin(\theta_1) = x - l_3\cos(\theta_z)\\ (l_1+l_2\cos\theta_2)\sin (\theta_1) + (l_2\sin\theta_2)\cos(\theta_1) = y - l_3\sin(\theta_z) \end{matrix} \right.
\left\{ \begin{matrix} \cos(\theta_1) = \frac {k_2w_2 + k_1w_1}{k_1^2 + k_2^2 } \\[4pt] \sin(\theta_1) = \frac {k_1w_2 - k_2w_1}{k_1^2 + k_2^2 } \\[4pt] \end{matrix} \right. \Rightarrow \left\{ \begin{array}{ccr} \theta_1 &pour& \theta_2 \\[2pt] \theta'_1 &pour& -\theta_2\\[2pt] \end{array} \right.

k1

k1

k2

k2

w1

w2

\left\{ \begin{array}{ccl} \theta_3 &=& \theta_z - (\theta_1 + \theta_2)\\ \theta'_3 &=& \theta_z - (\theta'_1 - \theta_2) \end {array} \right.
\begin{array}{cl} S_1:& (\theta_1, \theta_2, \theta_3)\\ S_2:& (\theta'_1, -\theta_2, \theta'_3)\\ \end{array}

Deux Configurations qui donnent les mêmes Positions et Orientations finales

\begin{array}{cl} S_1:& (\theta_1, \theta_2, \theta_3)\\ \end{array}
\begin{array}{cl} S_2:& (\theta'_1, -\theta_2, \theta'_3)\\ \end{array}

Domaine atteignable

  l3 = 0 -> cas 2R

-1 \leqslant \cos\theta_2 \leqslant 1 \quad et \quad l_3 = 0
l_1^2 + l_2^2 - 2l_1l_2 \leqslant x^2 + y^2 \leqslant l_1^2 + l_2^2 + 2l_1l_2 \\
(l_1-l_2)^2 \leqslant x^2 + y^2 \leqslant (l_1+l_2)^2
(x - l_3\cos{\theta_z)^2 } + (y - l_3\sin{\theta_z)^2 } = l_1^2 + l_2^2 + 2l_1l_2\cos{(\theta_2)} \\
(l_1-l_2)^2 \leqslant x^2 + y^2 \leqslant (l_1+l_2)^2

Le robot peut atteindre les points (x,y)

s'ils sont sur le disque gris

r1

r2

r1

r2

Modèles Cinématiques

  • MCD

  • MCI

(\dot{x},\dot{y},\dot{\theta}_z) = f(\dot{\theta}_1, \dot{\theta}_2, \dot{\theta}_3)
(\dot{\theta}_1, \dot{\theta}_2, \dot{\theta}_3) = f^{-1}(\dot{x},\dot{y},\dot{\theta}_z)
\frac{\partial}{\partial t}

MCD =      MGD(t)

\left\{ \begin{array}{ccl} x &=& l_1\cos{(\theta_1)}+ l_2\cos{(\theta_1+\theta_2)}+ l_3\cos{(\theta_1+\theta_2+\theta_3)} \\[4pt] y &=& l_1\sin{(\theta_1)}+ l_2\sin{(\theta_1+\theta_2)}+ l_3\sin{(\theta_1+\theta_2+\theta_3)} \\[4pt] \theta_z &=& \theta_1+\theta_2+\theta_3 \end{array} \right.

MGD

\left\{ \begin{array}{ccl} \frac{\partial}{\partial t} x&=& \frac{\partial}{\partial t} \left[ l_1\cos{(\theta_1)}+ l_2\cos{(\theta_1+\theta_2)} + l_3\cos{(\theta_1+\theta_2+\theta_3)} \right] \\[6pt] \frac{\partial}{\partial t} y &=& \frac{\partial}{\partial t} \left[ l_1\sin{(\theta_1)} + l_2\sin{(\theta_1+\theta_2)} + l_3\sin{(\theta_1+\theta_2+\theta_3)} \right] \\[6pt] \frac{\partial}{\partial t} \theta_z &=& \frac{\partial}{\partial t} \left[ \theta_1+ \theta_2+ \theta_3 \right] \end{array} \right.

MCD

\left\{ \begin{array}{ccl} \frac{\partial}{\partial t} x&=& \frac{\partial}{\partial t} \left[ l_1\cos{(\theta_1)}+ l_2\cos{(\theta_1+\theta_2)} + l_3\cos{(\theta_1+\theta_2+\theta_3)} \right] \\[2pt] \frac{\partial}{\partial t} y &=& \frac{\partial}{\partial t} \left[ l_1\sin{(\theta_1)} + l_2\sin{(\theta_1+\theta_2)} + l_3\sin{(\theta_1+\theta_2+\theta_3)} \right] \\[2pt] \frac{\partial}{\partial t} \theta_z &=& \frac{\partial}{\partial t} \left[ \theta_1+ \theta_2+ \theta_3 \right] \end{array} \right.

MCD

\left\{ \begin{array}{ccl} \dot{x}&=& - l_1 \dot{\theta_1} \sin{(\theta_1)} - l_2 (\dot{\theta}_{12}) \sin{(\theta_{12})} - l_3 (\dot{\theta}_{123}) \sin{(\theta_{123})} \\[6pt] \dot{y} &=& l_1 \dot{\theta_1}\cos{(\theta_1)} + l_2 (\dot{\theta}_{12})\cos{(\theta_{12})} + l_3 (\dot{\theta}_{123}) \cos{(\theta_{123})} \\[6pt] \dot{\theta_z} &=& \dot{\theta_1}+ \dot{\theta_2}+ \dot{\theta_3} \end{array} \right.
\frac{\partial}{\partial t} \cos(\theta)= - \dot{\theta}\sin({\theta}) \quad et\quad \frac{\partial}{\partial t} \sin(\theta)= \dot{\theta}\cos({\theta})
\left\{ \begin{array}{ccl} \dot{x}&=& - l_1 \dot{\theta_1} \sin{(\theta_1)} - l_2 (\dot{\theta}_{12}) \sin{(\theta_{12})} - l_3 (\dot{\theta}_{123}) \sin{(\theta_{123})} \\[6pt] \dot{y} &=& l_1 \dot{\theta_1}\cos{(\theta_1)} + l_2 (\dot{\theta}_{12})\cos{(\theta_{12})} + l_3 (\dot{\theta}_{123}) \cos{(\theta_{123})} \\[6pt] \dot{\theta_z} &=& \dot{\theta_1}+ \dot{\theta_2}+ \dot{\theta_3} \end{array} \right.
\begin{bmatrix} \dot{x} \\[4pt] \dot{y} \\[4pt] \dot{\theta}_z \\[4pt] \end{bmatrix} = \begin{bmatrix} - l_1 \sin{(\theta_1)} - l_2 \sin{(\theta_{12})} - l_3 \sin{(\theta_{123})} & - l_2 \sin{(\theta_{12})} - l_3 \sin{(\theta_{123})} & - l_3 \sin{(\theta_{123})}\\[8pt] l_1 \cos{(\theta_1)} + l_2 \cos{(\theta_{12})} + l_3 \cos{(\theta_{123})} & l_2 \cos{(\theta_{12})} + l_3 \cos{(\theta_{123})} & l_3 \cos{(\theta_{123})}\\[8pt] 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\[4pt] \dot{\theta}_2 \\[4pt] \dot{\theta}_3 \\[4pt] \end{bmatrix}

Matrice Jacobienne

\dot{X} = J \dot{\Theta}
\left\{ \begin{array}{ccr} \dot{x}&=& [ -l_1 \sin{(\theta_1)} -l_2 \sin{(\theta_{12})} - l_3 \sin{(\theta_{123})}] \quad \dot{\theta}_{1} \\[4pt] & &- [ l_2 \sin{(\theta_{12})} +l_3 \sin{(\theta_{123})} ] \quad \dot{\theta}_{2} \\[4pt] & &- l_3 \sin{(\theta_{123})} \quad \dot{\theta}_{3} \\[6pt] \dot{y}&= \dots & \\ \dot{\theta_z}&= \dots & \\ \end{array} \right\}
J = \begin{bmatrix} \frac{\partial x}{\partial \theta_1} & \frac{\partial x}{\partial \theta_2} & \frac{\partial x}{\partial \theta_3} \\[4pt] \frac{\partial y}{\partial \theta_1} & \frac{\partial y}{\partial \theta_2} & \frac{\partial y}{\partial \theta_3} \\[4pt] \frac{\partial z}{\partial \theta_1} & \frac{\partial z}{\partial \theta_2} & \frac{\partial z}{\partial \theta_3} \\[4pt] \end{bmatrix}
\dot{X} = J \dot{\Theta}
J^{-1}\dot{X} =\dot{\Theta}

Matrice Jacobienne

J = \begin{bmatrix} \frac{\partial x}{\partial \theta_1} & \frac{\partial x}{\partial \theta_2} \\[4pt] \frac{\partial y}{\partial \theta_1} & \frac{\partial y}{\partial \theta_2} \\[4pt] \end{bmatrix}
J^{-1}=\begin{bmatrix} j_{11} & j_{12} \\ j_{21} & j_{22} \end{bmatrix}^{-1} =\frac{1}{ \det(J)} \begin{bmatrix} j_{22} & -j_{12} \\ -j_{21} & j_{11} \end{bmatrix}
\det A = \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix}=ad-bc

Matrice Jacobienne

Cas 2R:   l3 = 0; θ3 = 0

J = \begin{bmatrix} - l_1 \sin{(\theta_1)} - l_2 \sin{(\theta_{12})} & - l_2 \sin{(\theta_{12})} \\[8pt] l_1 \cos{(\theta_1)} + l_2 \cos{(\theta_{12})} & l_2 \cos{(\theta_{12})} \\[8pt] \end{bmatrix}
\begin{array}{ccl} \det (J) &=& [- l_1 \sin{\theta_1} - l_2 \sin{\theta_{12}}] \times l_2 \cos{\theta_{12}} \\ & &+ l_2 \sin{\theta_{12}} \times [l_1 \cos{\theta_1} + l_2 \cos{\theta_{12}}] \end{array}
J^{-1} =\frac{1}{ \det(J)} \begin{bmatrix} j_{22} & -j_{12} \\ -j_{21} & j_{11} \end{bmatrix}

Non-inversible si det(J) = 0

Matrice Jacobienne

\begin{array}{ccl} \det (J) &=& [- l_1 \sin{\theta_1} - l_2 \sin{\theta_{12}}] \times l_2 \cos{\theta_{12}} \\ & &+ l_2 \sin{\theta_{12}} \times [l_1 \cos{\theta_1} + l_2 \cos{\theta_{12}}] \end{array}
\begin{array}{ccl} \det (J) &=& l_1 \; l_2\; \sin{\theta_2} \end{array}

            J non-inversible si sin θ2 = 0

\Rightarrow \theta_2 = n \pi

Si (2) est aligné avec (1)

⇒  Configuration      Singulière

L3 - UE Robotique - TD Méca - Exo 2

By Sinan Haliyo

L3 - UE Robotique - TD Méca - Exo 2

Modèles direct et inverse d'un robot 3R

  • 2,265