Airy beams

How to make laser beam turn

Claude-Alban
RANÉLY-VERGÉ-DÉPRÉ

Outline

  1. Introduction
  2. Simulation
  3. Applications
  4. Conclusion

Introduction

What are Airy beams anyway...?

Many answers are possible

Solution of Schrödinger equation for a free particule

i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},t) = \left [ \frac{-\hbar^2}{2\mu}\nabla^2 + V(\mathbf{r},t)\right ] \Psi(\mathbf{r},t)
itΨ(r,t)=[22μ2+V(r,t)]Ψ(r,t)i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},t) = \left [ \frac{-\hbar^2}{2\mu}\nabla^2 + V(\mathbf{r},t)\right ] \Psi(\mathbf{r},t)

Caustics

How can we generate them?

Fourier Optics !

Experimental setup

F. Courvoisier, Journées Nationales du réseau Optique et Photonique, 2012

Simulations

Analytical expression

There is often many ways of doing something but the best one is the one that works"

\phi(s,\xi) = Ai\left[ s - \left(\frac{\xi}{2}\right)^2\right] \exp\left[i \frac{s\xi}{2}-i\frac{\xi^3}{12}\right]
ϕ(s,ξ)=Ai[s(ξ2)2]exp[isξ2iξ312]\phi(s,\xi) = Ai\left[ s - \left(\frac{\xi}{2}\right)^2\right] \exp\left[i \frac{s\xi}{2}-i\frac{\xi^3}{12}\right]

Show us some code !


Trajectoire = @(s,kzi) airy(s-(kzi./2).^2);
Phase = @(s,kzi) exp(1i*s*kzi./2 - 1i*kzi.^3/12);
Phi = @(s,kzi) Trajectoire(s,kzi).*Phase(s,kzi);

The result

Applications

Finite beam

PRL 99, 213901 (2007)

Regeneration of the beam

doi:10.1038/nphoton.2008.201

Optical tweezers

doi:10.1038/nphoton.2008.201

doi:10.1038/nphoton.2008.201

Curve-made manufacturing

F. Courvoisier, Journées Nationales du réseau Optique et Photonique, 2012

Conclusion

Airy beams

By Claude-Alban RANÉLY-VERGÉ-DÉPRÉ

Airy beams

Présentation de Procédés Laser

  • 21