Gallium phosphide photonic crystal nanocavities in the visible

APPLIED PHYSICS LETTERS 93, 063103

Kelley Rivoire, Andrei Faraon, and Jelena Vuckovic

Outline

Introduction

Results of the article

Conclusion

Introduction

A parallel

A parallel

e^-
ee^-

photon

periodic potential

Semi-conductors

Photonic crystals

periodic index

\Psi(\ \vec{r}\ )\exp^{-iwt}
Ψ( r )expiwt\Psi(\ \vec{r}\ )\exp^{-iwt}

Semi-conductors

Photonic crystals

More in depth...

\left( -\frac{\hbar^2\nabla^2}{2m} + V \right)\Psi = E \Psi
(222m+V)Ψ=EΨ\left( -\frac{\hbar^2\nabla^2}{2m} + V \right)\Psi = E \Psi
H(\ \vec{r}\ )\exp^{-iwt}
H( r )expiwtH(\ \vec{r}\ )\exp^{-iwt}
\nabla \times \left( \frac{1}{\varepsilon( \vec{r}\ )} \nabla\times H\right) = \frac{\omega^2}{c^2} H
×(1ε(r )×H)=ω2c2H\nabla \times \left( \frac{1}{\varepsilon( \vec{r}\ )} \nabla\times H\right) = \frac{\omega^2}{c^2} H
\Psi ( \vec{r} ) = u_{k} ( \vec{r} ) \exp (i \vec{k} \cdot \vec{r}\ )
Ψ(r)=uk(r)exp(ikr )\Psi ( \vec{r} ) = u_{k} ( \vec{r} ) \exp (i \vec{k} \cdot \vec{r}\ )
H ( \vec{r} ) = u_{k} ( \vec{r} ) \exp (i \vec{k} \cdot \vec{r}\ )
H(r)=uk(r)exp(ikr )H ( \vec{r} ) = u_{k} ( \vec{r} ) \exp (i \vec{k} \cdot \vec{r}\ )

Real photonic crystals

Example

Example

Results

Results

  • Made a photonic crystal !

  • Made a photonic crystal in the visible spectrum

  • Cavity with a quality factor of 1100

  • Resonance can be controlled by temperature

Cavity spectrum

Quality factor

Q = \frac{2\pi f_o\,E}{P}
Q=2πfoEPQ = \frac{2\pi f_o\,E}{P}

Temperature influence

Conclusion

  • Embedding in fibers

  • Embedding in fibers to make supercontinums

  • ...

Thank you for your attention !

Any questions ?

Photonic crystal nanocavities

By Claude-Alban RANÉLY-VERGÉ-DÉPRÉ

Photonic crystal nanocavities

Presentation about the article entitled "Gallium phosphide photonic crystal nanocavities in the visible" (APPLIED PHYSICS LETTERS 93, 063103)

  • 33