Presentations
Templates
Features
Teams
Pricing
Log in
Sign up
Log in
Sign up
Menu
\text{Homework 2}
\text{Show that:}
\displaystyle \sum_{n=1}^{\infty} \frac{\operatorname{coth}(\pi n)}{n^7}=\frac{19 \pi^7}{56700}
\text{Problem 1}
\displaystyle S(a, b)=\sum_{n=0}^{\infty} \frac{1}{n^2+a^2} \frac{1}{n^2+b^2},
\text{1) Evaluate the following sum:}
\text{Problem 2:}
\text{2) Find the limit when } b\rightarrow a
\text{2) Find the limit when } (b^2+a^2) \rightarrow 0
\displaystyle I=\int_1^{\infty} \frac{d x}{x \sqrt{x^2-1}}
\text{Calculate the following integral:}
\text{Problem 3:}
\text { Use calculus of residues to evaluate the integral: }\\ \displaystyle \int_0^{\infty} \frac{x^{p-1}}{1+x} d x\\
\text{Problem 4:}
\text { where } p<1 \text{ and p is positive }\text {. }
Sommerfeld-Watson
By smstry
Made with Slides.com
Sommerfeld-Watson
2 years ago
158
smstry
More from
smstry
BESbswy
BESbswy
BESbswy
BESbswy