Stefan Sommer
Professor at Department of Computer Science, University of Copenhagen
Means, bridges, and shape variation along phylogenetic trees
Stefan Sommer, University of Copenhagen
Faculty of Science, University of Copenhagen
AI Topology, 2024
w/ Sarang Joshi, Frank v.d. Meulen, Moritz Schauer, Benjamin Eltzner, Stephan Huckemann, Mathias H. Jensen, Pernille E.H. Hansen, Mads Nielsen, Rasmus Nielsen, Christy Hipsley, Sofia Stoustrup
Villum foundation
Novo nordisk foundation
University of Copenhagen
Statistics of geometric data:
- plane directions: \(\mathbb{S}^1\)
- geographical data: \(\mathbb{S}^2\)
- 3D directions: \(\mathrm{SO}(3), \mathbb{S}^2\)
- angles: \(\mathbb{T}^N\)
- shapes
Deterministic:
Stochastic:
Generalization of Euclidean statistical notions and techniques.
Nye, White, JMIV'14;
Sommer,IPMI'15; Sommer,Svane,JGM'15;
Hansen,Eltzner,Huckemann,Sommer,GSI'21,Bernoulli'23
Hotz,Huckemann'11; Le,Barden'14
Eltzner,Huckeman'19; Hansen,Eltzner,Huckemann,Sommer'23
Jensen, Mallasto, Sommer 2019 ; Jensen, Sommer 2021, 2022
Delyon/Hu 2006:
\(\sigma\) invertible:
\(v\)
\(x_0\)
\(x_t\)
\(\pi\)
Thompson'16, Sommer,Joshi,Højgaard,'22
Corstanje,van der Meulen,Schauer,Sommer'24
Guiding using the heat kernel and comparison manifolds
A return to morphology:
- Rules of morphological change
- Drivers of morphological change (ecology, historical contingency)
- Mechanisms of morphological change (genetic basis)
Center for Computational Evolutionary Morphometrics
w/ Rasmus Nielsen
action: \(\phi.s=\phi\circ s\) (shapes)
\(\phi.s=s\circ\phi^{-1}\) (images)
\( \phi \)
\( \phi \) warp of domain \(\Omega\) (2D or 3D space)
landmarks: \(s=(x_1,\ldots,x_n)\)
curves: \(s: \mathbb S^1\to\mathbb R^2\)
surfaces: \(s: \mathbb S^2\to\mathbb R^3\)
\( \phi_t:[0,T]\to\mathrm{Diff}(\Omega) \) path of diffeomorphisms (parameter t)
LDDMM: Grenander, Miller, Trouve, Younes, Christensen, Joshi, et al.
Markussen,CVIU'07; Budhiraja,Dupuis,Maroulas,Bernoulli'10
Trouve,Vialard,QAM'12;Vialard,SPA'13;Marsland/Shardlow,SIIMS'17
Arnaudon,Holm,Sommer,IPMI'17; FoCM'18; JMIV'19
Arnaudon,v.d. Meulen,Schauer,Sommer'21
geodesic ODE
perturbed SDE
Brown. motion
Brown. motion
Brown. motion
Brown. motion
branch (independent children)
incorporate leaf observations \(x_{V_T}\) into probabilistic model:
\(p(X_t|x_{V_T})\)
Doob’s h-transform
\(h_s(x)=\prod_{t\in\mathrm{ch(s)}}h_{s\to t}(x)\)
conditioned process \(X^*_t\)
approximations \(\tilde{h}\)
guided process \(X^\circ_t\)
shape \(s_0\)
shape \(s_1\)
stoch. evolution \(s_0\rightarrow s_1\)
Riemannian Brownian motion:
\( \phi_t \)
Shape process:
\[dX_t=K(X_t)\circ dW_t\]
Kernel matrix:
\[K(X_t)^i_j=k(x_i,x_j)\]
\(X_t\) landmarks at time \(t\):
\[X_t=\begin{pmatrix}x_{1,t}\\y_{1,t}\\\vdots\\x_{n,t}\\y_{n,t}\end{pmatrix}\]
\(X_0\)
\(t=\frac12\)
\(t=3\)
Conditioning on hitting target \(v\) at time \(T>0\):
\[X_t|X_T=v\]
Ito stochastic process:
\[dx_t=b(t,x_t)dt\qquad\qquad\qquad\qquad\quad\\+\sigma(t,x_t)dW_t\]
Bridge:
\[dx^*_t=b(t,x^*_t)dt+a(t,x^*_t)\nabla_x\log \rho_t(x^*_t)dt\\+\sigma(t,x^*_t)dW_t\]
Score \(\nabla_x\log \rho_t\) intractable....
\[\rho_t(x)=p_{T-t}(v;x)\]
\[a(t,x)=\sigma(t,x)\sigma(t,x)^T\]
black: \(X_0\), red: \(v\)
Auxilary process:
\[d\tilde{x}_t=\tilde{b}(t,\tilde{x}_t)dt+\tilde{\sigma}(t,\tilde{x}_t)dW_t\]
Approximate bridge:
\[d\tilde{x}_t=\tilde{x}(t,\tilde{x}_t)dt+\tilde{a}(t,\tilde{x}_t)\nabla_x\log \tilde{\rho}_t(\tilde{x})dt\\+\tilde{\sigma}(t,\tilde{x}_t)dW_t\]
E.g. linear process, score \(\nabla_x\log \tilde{\rho}_t\) is known in closed from
(almost) explicitly computable likelihood ratio:
\[\frac{d\mathbb P^*}{d\tilde{\mathbb P}}=\frac{\tilde{\rho}_T(v)}{\rho_T(v)}\Psi(\tilde{x}_t)\]
van der Meulen, Schauer et al.
Ito stochastic process:
\[dx_t=b(t,x_t)dt+\sigma(t,x_t)dW_t\]
Bridge process:
\[dx^*_t=b(t,x^*_t)dt+a(t,x^*_t)\nabla_x\log \rho_t(x^*_t)dt\\+\sigma(t,x^*_t)dW_t\]
Score \(\nabla_x\log \rho_t\) intractable....
v.d. Meulen,Schauer,Arnaudon,Sommer,SIIMS'22
Bridge:
Leaf conditioning:
\(x_0\)
\(v\)
\(x_0\)
\(h\)
\(v_1\)
van der Meulen, Schauer'20; van der Meulen'22
Stoustrup, Nielsen, van der Meulen, Sommer
\(v_2\)
recursive,leaves to root
Backwards filter:
root to leaves
Forward guiding:
\(v\)
\(v_1\)
\(v_2\)
\(h\)
\(x_0\)
tree
backwards filtering
forwards guiding
v.d. Meulen,Schauer,Arnaudon,Sommer,SIIMS'22
JaxGeometry: https://github.com/computationalevolutionarymorphometry/jaxgeometry CCEM: http://www.ccem.dk
Hyperiax: https://github.com/computationalevolutionarymorphometry/hyperiax slides: https://slides.com/stefansommer
References:
By Stefan Sommer
Professor at Department of Computer Science, University of Copenhagen