Stefan Sommer
Professor at Department of Computer Science, University of Copenhagen
Stefan Sommer, University of Copenhagen
Faculty of Science, University of Copenhagen
Interactions of Statistics and Geometry, 2024
w/ Frank v.d. Meulen, Rasmus Nielsen, Christy Hipsley, Sofia Stoustrup, Libby Baker, Gefan Yang, Michael Severinsen
Villum foundation
Novo nordisk foundation
University of Copenhagen
Center for Computational Evolutionary Morphometrics
w/ Rasmus Nielsen
Brown. motion
Brown. motion
Brown. motion
Brown. motion
branch (independent children)
incorporate leaf observations \(x_{V_T}\) into probabilistic model:
\(p(X_t|x_{V_T})\)
Brown. motion
Brown. motion
Brown. motion
Brown. motion
1) What is a shape Brownian motion?
2) How do we condition the nonlinear process on shape observations?
3) How do we perform inference in the full model?
Stochastic processes that
shape \(s_0\)
shape \(s_1\)
stoch. evolution \(s_0\rightarrow s_1\)
Riemannian Brownian motion:
action: \(\phi.s=\phi\circ s\) (shapes)
\(\phi.s=s\circ\phi^{-1}\) (images)
\( \phi \)
\( \phi \) warp of domain \(\Omega\) (2D or 3D space)
landmarks: \(s=(x_1,\ldots,x_n)\)
curves: \(s: \mathbb S^1\to\mathbb R^2\)
surfaces: \(s: \mathbb S^2\to\mathbb R^3\)
\( \phi_t:[0,T]\to\mathrm{Diff}(\Omega) \) path of diffeomorphisms (parameter t)
LDDMM: Grenander, Miller, Trouve, Younes, Christensen, Joshi, et al.
Markussen,CVIU'07; Budhiraja,Dupuis,Maroulas,Bernoulli'10
Trouve,Vialard,QAM'12;Vialard,SPA'13;Marsland/Shardlow,SIIMS'17
Arnaudon,Holm,Sommer,IPMI'17; FoCM'18; JMIV'19
Arnaudon,v.d. Meulen,Schauer,Sommer'21
geodesic ODE
perturbed SDE
Shape process:
\[dX_t=K(X_t)\circ dW_t\]
Kernel matrix:
\[K(X_t)^i_j=k(x_i,x_j)\]
Infinite noise:
\[dX_t = Q^{1/2}(X_t) \circ dW_t\]
\(Q^{1/2}(X_t)v(x) =\\\qquad \int_{D} k^{Q^{1/2}}(X_t(x)+x,y) v(y) \, dy\)
\(X_t\) landmarks at time \(t\):
\[X_t=\begin{pmatrix}x_{1,t}\\y_{1,t}\\\vdots\\x_{n,t}\\y_{n,t}\end{pmatrix}\]
\(t=\frac12\)
\(t=3\)
\(X_t\) (no conditioning)
\(X_t|X_T=v\) (conditioned)
Delyon/Hu 2006:
\(\sigma\) invertible:
\(v\)
\(x_0\)
\(x_t\)
Jensen, Sommer 2021, 2022
Conditioning on hitting target \(v\) at time \(T>0\):
\[X_t|X_T=v\]
Ito stochastic process:
\[dx_t=b(t,x_t)dt\qquad\qquad\qquad\qquad\quad\\+\sigma(t,x_t)dW_t\]
True bridge:
\[dx^*_t=b(t,x^*_t)dt+a(t,x^*_t)\nabla_x\log \rho_t(x^*_t)dt\\+\sigma(t,x^*_t)dW_t\]
Score \(\nabla_x\log \rho_t\) intractable....
\[\rho_t(x)=p_{T-t}(v;x)\]
\[a(t,x)=\sigma(t,x)\sigma(t,x)^T\]
black: \(X_0\), red: \(v\)
Auxilary process:
\[d\tilde{x}_t=\tilde{b}(t,\tilde{x}_t)dt+\tilde{\sigma}(t,\tilde{x}_t)dW_t\]
Approximate bridge:
\[dx_t^\circ=b(t,x_t^\circ)dt+a(t,x_t^\circ)\nabla_x\log \tilde{\rho}_t(x_t^\circ)dt\\+\sigma(t,x_t^\circ)dW_t\]
E.g. linear process, score \(\nabla_x\log \tilde{\rho}_t\) is known in closed from
(almost) explicitly computable likelihood ratio:
\[\frac{d\mathbb P^*}{d\mathbb P^\circ}=\frac{\tilde{\rho}_T(v)}{\rho_T(v)}\Psi(x_t^\circ)\]
Backward filtering, forward guiding: van der Meulen, Schauer et al.
Ito stochastic process:
\[dx_t=b(t,x_t)dt+\sigma(t,x_t)dW_t\]
Bridge process:
\[dx^*_t=b(t,x^*_t)dt+a(t,x^*_t)\nabla_x\log \rho_t(x^*_t)dt\\+\sigma(t,x^*_t)dW_t\]
Score \(\nabla_x\log \rho_t\) intractable....
v.d. Meulen,Schauer,Arnaudon,Sommer,SIIMS'22
Bridge:
Leaf conditioning:
\(x_0\)
\(v\)
\(x_0\)
\(h\)
\(v_1\)
van der Meulen, Schauer'20; van der Meulen'22
Stoustrup, Nielsen, van der Meulen, Sommer
\(v_2\)
recursive,leaves to root
Backwards filter:
root to leaves
Forward guiding:
\(v\)
\(v_1\)
\(v_2\)
\(h\)
\(x_0\)
Brown. motion
Brown. motion
Brown. motion
Brown. motion
branch (independent children)
incorporate leaf observations \(x_{V_T}\) into probabilistic model:
\(p(X_t|x_{V_T})\)
Doob’s h-transform
\(h_s(x)=\prod_{t\in\mathrm{ch(s)}}h_{s\to t}(x)\)
conditioned process \(X^*_t\)
approximations \(\tilde{h}\)
guided process \(X^\circ_t\)
Messages:
Up:
Fuse:
tree
backwards filtering
forwards guiding
v.d. Meulen,Schauer,Arnaudon,Sommer,SIIMS'22
sample conditional distribution
sample parameters (e.g. kernel width, amplitude)
Severinsen, Hipsley, Nielsen, Sommer
Brown. motion
Brown. motion
Brown. motion
Brown. motion
1) What is a shape Brownian motion?
2) How do we condition the nonlinear process on shape observations?
3) How do we perform inference in the full model?
Severinsen, Hipsley, Nielsen, Sommer
Train a neural network to learn the score in the bridge SDE:
\[dx^*_t=b(t,x^*_t)dt+a(t,x^*_t)\nabla_x\log \rho_t(x^*_t)dt\\+\sigma(t,x^*_t)dW_t\]
Markussen,CVIU'07; Budhiraja,Dupuis,Maroulas,Bernoulli'10
Trouve,Vialard,QAM'12;Vialard,SPA'13;Marsland/Shardlow,SIIMS'17
Arnaudon,Holm,Sommer,IPMI'17; FoCM'18; JMIV'19
Arnaudon,v.d. Meulen,Schauer,Sommer'21
Diffusion mean
Most probable paths
Eltzner, Huckemann, Grong, Corstanje,van der Meulen,Schauer,Sommer et al.
Manifold bridges
Jax magic... in milliseconds:
JaxGeometry: https://github.com/computationalevolutionarymorphometry/jaxgeometry CCEM: http://www.ccem.dk
Hyperiax: https://github.com/computationalevolutionarymorphometry/hyperiax slides: https://slides.com/stefansommer
References:
By Stefan Sommer
Professor at Department of Computer Science, University of Copenhagen