Stefan Sommer
Professor at Department of Computer Science, University of Copenhagen
Stefan Sommer, University of Copenhagen
Faculty of Science, University of Copenhagen
Nordstat, 2023
w/ Sarang Joshi, Benjamin Eltzner, Stephan Huckemann, Mathias H. Jensen, Pernille E.H. Hansen
Villum foundation
Novo nordisk foundation
University of Copenhagen
v.d. Meulen,Schauer,Arnaudon,Sommer,SIIMS'21
Plane directions: \(\mathbb{S}^1\)
Geographical data: \(\mathbb{S}^2\)
3D directions: \(\mathrm{SO}(3), \mathbb{S}^2\)
Angles: \(\mathbb{T}^N\)
Shapes
Generalization of Euclidean statistical notions and techniques.
Nye, White, JMIV'14;
Sommer,IPMI'15; Sommer,Svane,JGM'15;
Hansen,Eltzner,Huckemann,Sommer,GSI'21,Bernoulli'23
Deterministic:
Stochastic:
v.d. Meulen,Schauer,Arnaudon,Sommer,SIIMS'21
Delyon/Hu 2006:
\(\sigma\) invertible:
\(v\)
\(x_0\)
\(x_t\)
\(h_u=(\pi_*|_{H_uFM})^{-1}\)
\(H_i(u)=h_u(ue_i)\)
Stochastic development:
\(dU_t=\sum_{i=1}^d H_i(U_t)\circ_{\mathcal S} dW_t^i\)
\(W_t\) Euclidean Brownian motion
\(X_t=\pi(U_t)\) Riemannian Brownian motion
\(U_t\) is stochastically parallel transported
Fix \(T>0\): \(U_T\) probability distribution in \(FM\)
Rolling without slipping
Driving semi-martingale:
developed process:
Fermi bridge:
Jensen, Mallasto, Sommer 2019 ; Jensen, Sommer 2021, 2022
\(\pi\)
Thompson'16, Sommer,Joshi,Højgaard,'22
Left-invariant frame:
\(V_i(g)=(dL_g)_ev_i,\quad v_i\in\mathfrak g\)
Brownian motion:
\(dg_t=-\frac12V_0(g_t)dt+V_i(g_t)\circ dW_t^i\)
Fermi bridge:
\(dg_t=-\frac12V_0(g_t)dt+V_i(g_t)\circ \left(dW_t^i-\frac{\mathrm{log}_{g_t}(v)^i}{T-t}dt\right)\)
Fermi bridge to fiber:
\(dg_t=-\frac12V_0(g_t)dt+V_i(g_t)\circ \left(dW_t^i-\frac{\left(\nabla d(g_t,\pi^{-1}(v))^2\right)^i}{2(T-t)}dt\right)\)
Brownian motion starting point
Direct optimzation of \(\mathcal{L}(\theta; y_1,\ldots,y_N)\):
Direct sampling:
Sommer, Bronstein'19; Jensen,Sommer'22
Fermi bridge:
Coordinate bridge:
One (or few) forward samples - compared to nested optimization
Added variance on top of CLT - gain in computational speed
Diagonally conditioned process:
Frechet mean (green), diffusion mean (blue)
code: http://bitbucket.com/stefansommer/jaxgeometry Centre for Computational Evolutionary Morphometry: http://www.ccem.dk
slides: https://slides.com/stefansommer Stochastic Morphometry: https://www.ccem.dk/stochastic-morphometry/
References:
By Stefan Sommer
Professor at Department of Computer Science, University of Copenhagen