DIGIFABA Kick-off

Stefan Sommer, University of Copenhagen

Faculty of Science, University of Copenhagen

Ringe, January, 2026

Mathematical models of shapes

Shape models should

  • apply to landmarks, curves, surfaces and images
  • be independent of discretization
  • preserve shape structure
  • equivariant to acting groups
  • be recovered from discretizations
         \(\Large\Rightarrow\)
  • model correlations between points
  • nonlinear

Shapes, deformations and nonlinearity

E_{s_0,s_1}(\phi)=R(\phi)+\frac1\lambda S(\phi.s_0,s_1)

action: \(\phi.s=\phi\circ s\)         (shapes)
             \(\phi.s=s\circ\phi^{-1}\)     (images)

\( \phi \)

\( \phi \) warp of domain \(\Omega\) (2D or 3D space)

landmarks: \(s=(x_1,\ldots,x_n)\)

curves: \(s: \mathbb S^1\to\mathbb R^2\)

surfaces: \(s: \mathbb S^2\to\mathbb R^3\)

s_0
s_1

Geometric + metric view

R(\phi_t)=\int_0^T\|\partial_t \phi_t\|_{\phi_t}^2dt

\( \phi_t:[0,T]\to\mathrm{Diff}(\Omega) \) path of diffeomorphisms (parameter t)

\mathrm{Diff}(\Omega)
\mathrm{Id}_{\mathrm{Diff}(\Omega)}
\phi_t

LDDMM: Grenander, Miller, Trouve, Younes, Christensen, Joshi, et al.

\partial_t \phi_t
\phi

Action on leafs

- define action on leaf shape and internal structure

- define fiber of internal structure change

- geometric and metric structure on fiber bundle

- statistics

People

- Thomas Besnier (postdoc from Jan 1 2026, 50%)

- Lili Bao (postdoc from Mar 1 2026, 50%)

- Gabriel D'hulst (PhD, from Jun 1 2026)

 

MSc students:

- spring 2026: Mark, Nynne

WP 2, 3

WP2 Computer vision for detection and segmentation

2.1) Identify relevant object detection and segmentation models. Set up computational pipelines for processing of the field images,

2.2) Develop a fine-tuning methodology to further optimise the base models,

2.3) Evaluate the results with a particular focus on the robustness of the models. For this, adequate fine-grained evaluation metrics need to be developed.

 

WP3 Shape analysis for plant morphology

3.1) Adapt infinite-dimensional shape models based on actions of diffeomorphisms to plant shape analysis, particularly defining appropriate actions for the overall shape and fine-grained internal structure,

3.2) Develop methodology for low-dimensional representation and visualisation of shape data using the diffeomorphic models,

3.3) Develop statistical methodology for regression analysis, hypothesis testing and analysis of time series of shape data.

Geometry, stochastics, geometric statistics

JaxGeometry: https://github.com/computationalevolutionarymorphometry/jaxgeometry    CCEM: http://www.ccem.dk

Hyperiax:        https://github.com/computationalevolutionarymorphometry/hyperiax          slides: https://slides.com/stefansommer

References:

  • Grong, Sommer: Most probable paths for developed processes, https://arxiv.org/abs/2211.15168
  • Grong, Sommer: Most probable flows for Kunita SDEs, https://arxiv.org/abs/2209.03868
  • Sommer, Schauer, v. d. Meulen: Stochastic flows and shape bridges, Oberwolfach, 2021
  • Baker, Besnier, Sommer: A function space perspective on stochastic shape evolution, https://arxiv.org/abs/2302.05382
  • Yang, Baker, Severinsen, Hipsley, Sommer: Simulating infinite-dimensional nonlinear diffusion bridges, https://arxiv.org/abs/2405.18353
  • Baker, Yang, Severinsen, Hipsley, Sommer: Conditioning non-linear and infinite-dimensional diffusion processes, https://arxiv.org/abs/2402.01434
  • Hansen, Eltzner, Huckemann, Sommer: Diffusion Means in Geometric Spaces, Bernoulli, 2023, arXiv:2105.12061
  • Grong, Sommer: Most probable paths for anisotropic Brownian motions on manifolds, FoCM 2022, arXiv:2110.15634
  • Philipp Harms, Peter W. Michor, Xavier Pennec, Stefan Sommer: Geometry of sample spaces, Diff. Geom. and its Appl., 2023, arXiv:2010.08039
  • Arnaudon, v.d. Meulen, Schauer, Sommer: Diffusion bridges for stochastic Hamiltonian systems and shape evolutions,SIIMS,2022,arXiv:2002.00885
  • Højgaard Jensen, Sommer: Simulation of Conditioned Diffusions on Riemannian Manifolds, 2021, arXiv:2105.13190.
  • Arnaudon, Holm, Sommer: A Geometric Framework for Stochastic Shape Analysis, Foundations of Computational Mathematics, 2019, arXiv:1703.09971.
  • Sommer, Svane: Modelling Anisotropic Covariance using Stochastic Development and Sub-Riemannian Frame Bundle Geometry, JoGM, 2017, arXiv:1512.08544.
  • Arnaudon, Holm, Sommer: A Stochastic Large Deformation Model for Computational Anatomy, IPMI 2017, arXiv:1612.05323.

DIGIFABA Kick-off

By Stefan Sommer

DIGIFABA Kick-off

  • 2