AlphaZero

Intro slide

AlphaZero

Go

Chess

Starcraft

AlphaGo

Complexity

"Math", "Machine Learning"

Fucking DeepMind White Papers

NOTHING

How AIs play games

Decision Trees

BruteForce Search

Evaluation and Pruning

-0.8

4.3

1.4

-2.6

-2.1

-0.8

State of the art: Alpha-beta pruning & MiniMax*

*These techniques only work if you can properly evaluate the board position

5.0

3.2

-1.3

-1.9

-4.8

-3.2

1.2

-0.9

-1.3

Evaluation is Hard

3. ๐Ÿ˜ค๐Ÿ†โœŠ

2. ๐Ÿ”€๐Ÿง ๐Ÿ•ธ

1. ๐ŸŽฒ๐ŸŒณ๐Ÿ”

How does AlphaZero Work?

Monte Carlo Tree Search

Each Board state will have a # times won from that position (exploit), and # times visited (explore)
0. Start at the top
1. Pick the next move that has the highest score, calculated from the explore and exploit numbers
2. Keep going until we reach a state we haven't seen before
3. Add each legal move to the tree, and play out X random games from that position
4. Update the explore and exploit numbers back up the tree, 
5. Goto (0)

ย 

These will be used to figure out a score. Low explore is very good, High exploit is good.

ย 

You got it now right?

right?

right?!

Neural Nets

a crash course

Good at "fuzzy" recognition.

Needs to be supervised.

What is it doing?

It's just a lot of multiplying and adding TBH

How does it learn?

Let's put'em together

Adversarial Self-Play

It's crazy efficient

  • You'd think this would require 2x resources
  • But both sides "share" the Search Tree andย the neural net
  • In practice it's more like 1.1x more resources to self-play

It's good. Like, scaryย good.

What's Next?

  • ย AlphaStar - Starcraftย 

Hidden information, real-timeย 

  • MuZero - Various Atari games

No defined rules, sloppy inputsย 

  • AlphaDiplomat - Diplomacy

Positive-sum games, co-operation, communication

โœ… Beat world champions (dec 2018)

โœ… Outperformed state-of-the-art algos (mar 2020)

โ“ Work started in June, 2020

Thanks!

Sorry, I put this together super fast...

๐›‚

By Scott Tolksdorf

๐›‚

  • 73