Lecture 6:

Policy Gradients

Artyom Sorokin | 18 Mar

Reinforcement Learning Objective

\theta^{*} = \text{argmax}_{\theta} \, \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \biggl[ \sum\limits_t \gamma^{t} r_t \biggr]

Lets recall Reinforcement learning objective:

where:

  • \(\theta\) - parameters of our policy
  • \(p_{\theta}(\tau)\) - probability distribution over trajectories generated by policy \(\theta\)
  • \([\sum_t] \gamma^{t} r_t\) - total episodic reward

 

 

Policy Gradients

Lets recall Reinforcement learning objective:

\theta^{*} = \text{argmax}_{\theta} \, \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \biggl[ \sum\limits_t \gamma^{t} r_t \biggr]

Reinforcement learing Objective

RL objective:

\theta^{*} = \text{argmax}_{\theta} \, \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \biggl[ \sum\limits_t \gamma^{t} r_t \biggr]

GOAL:

We want to find gradient of RL objective \(J(\theta)\) with respect to policy parameters \(\theta\)!

\textcolor{blue}{r(\tau)}
\textcolor{red}{J(\theta)}
J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [ r(\tau) ] = \int p_{\theta}(\tau) r(\tau) d \tau

Policy Gradients

To maximize mean expected return:

Find:

\nabla_{\theta} J(\theta) = \int \nabla_{\theta} p_{\theta}(\tau) r(\tau) d \tau
J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [ r(\tau) ] = \int p_{\theta}(\tau) r(\tau) d \tau

Log-derivative trick:

\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \frac{\nabla_{\theta} p_{\theta}(\tau)}{p_{\theta}(\tau)} = p_{\theta}(\tau) \nabla_{\theta}\,log\,p_{\theta}(\tau)
= \int \textcolor{blue}{p_{\theta}(\tau) \nabla_{\theta}\,log\,p_{\theta}(\tau)} r(\tau) d \tau = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \biggl[ \nabla_{\theta}\,log\,p_{\theta}(\tau) r(\tau) \biggr]

Policy Gradients

Maximize mean expected return:

Gradients w.r.t \(\theta\):

p_{\theta}(\tau) = p_{\theta}(s_0, a_0, ..., s_T, a_T) = p(s_0) \prod\limits_{t=0}^T \pi_{\theta}(a_t|s_t) p(s_{t+1}|a_t,s_t)
J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [ r(\tau) ]
\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \biggl[ \nabla_{\theta}\,log\,p_{\theta}(\tau) r(\tau) \biggr]

We can rewrite \(p_{\theta}(\tau)\) as:

Then:

log\, p_{\theta}(\tau) = log\, p(s_0) + \sum\limits_{t=0}^T [ log\, \pi_{\theta}(a_t|s_t) + log\, p(s_{t+1}|a_t,s_t) ]

Policy Gradients

Maximize mean expected return:

Gradients w.r.t \(\theta\):

J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [ r(\tau) ]
\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \biggl[ \nabla_{\theta}\,log\,p_{\theta}(\tau) r(\tau) \biggr]
log\, p(s_0) + \sum\limits_{t=0}^T [ log\, \pi_{\theta}(a_t|s_t) + log\, p(s_{t+1}|a_t,s_t) ]
\textcolor{blue}{\nabla_{\theta}} \biggl[ log\, p(s_0) + \sum\limits_{t=0}^T [ log\, \pi_{\theta}(a_t|s_t) + log\, p(s_{t+1}|a_t,s_t) ] \biggr]
\textcolor{black}{\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_t|s_t) r(\tau) \biggr]}

Policy Gradients:

Estimating Policy Gradients

We don't know the true expectation there:

And of course we can approximate it with sampling:

\nabla_{\theta} J(\theta) = \textcolor{red}{\mathbb{E}_{\tau \sim p_{\theta}(\tau)}} \biggl[ \nabla_{\theta}\,log\,p_{\theta}(\tau) r(\tau) \biggr]
\nabla_{\theta} J(\theta) \approx \textcolor{blue}{\frac{1}{N} \sum\limits_{i=1}^{N}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{\textcolor{blue}{i},t}|s_{\textcolor{blue}{i},t}) r(\tau_{\textcolor{blue}{i}}) \biggr]
= \textcolor{blue}{\frac{1}{N} \sum\limits_{i=1}^{N}} \biggl[ \biggl( \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{\textcolor{blue}{i},t}|s_{\textcolor{blue}{i},t}) \biggr) \biggl( \sum\limits_{t=0}^{T} \gamma^t r_{\textcolor{blue}{i},t} \biggr) \biggr]

REINFORCE

Estimate policy gradients:

Update policy parameters:

\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)
\nabla_{\theta} J(\theta) \approx \textcolor{black}{\frac{1}{N} \sum\limits_{i=1}^{N}} \biggl[ \biggl( \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{\textcolor{black}{i},t}|s_{\textcolor{black}{i},t}) \biggr) \biggl( \sum\limits_{t=0}^{T} \gamma^t r_{\textcolor{black}{i},t} \biggr) \biggr]

REINFORCE (Pseudocode):

  1.  Sample \(\{\tau^i\}\) with \(\pi_{\theta}\) (run the policy in the env)
  2. Estimate policy gradient \(\nabla_{\theta}J(\theta)\) on \(\{\tau^i\}\)
  3. Update policy parameters: \(\theta\) using estimated gradient
  4. Go to 1

PG is on-policy algorithm

To train REINFORCE we estimate this:

\nabla_{\theta} J(\theta) = \mathbb{E}_{\textcolor{red}{\tau \sim p_{\theta}(\tau)}} \biggl[ \nabla_{\theta}\,log\,p_{\theta}(\tau) r(\tau) \biggr]

We can only use samples generated with \(\pi_{\theta}\)!

 On-policy learning:

  • After one gradient step samples are useless
  • PG can be extremely sample inefficient!

REINFORCE (Pseudocode):

  1.  Sample \(\{\tau^i\}\) with \(\pi_{\theta}\) (run the policy in the env)
  2. Estimate policy gradient \(\nabla_{\theta}J(\theta)\) on \(\{\tau^i\}\)
  3. Update policy parameters: \(\theta\) using estimated gradient
  4. Go to 1

Policy Gradients

p_{\theta}(\tau) = p_{\theta}(s_0, a_0, r_0, ..., s_T, a_T, r_T) = p(s_1) \prod\limits_{t=0}^T \pi_{\theta}(a_t|s_t) p(s_{t+1}|a_t,s_t)
\theta^{*} = \text{argmax}_{\theta} \, \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [ \sum^{T}_{t=0} \gamma^{t} r_t ]

Lets recall Reinforcement learning objective:

where:

  • \(\theta\) - parameters of our policy
  • \(p_{\theta}(\tau)\) - probability distribution over trajectories generated by policy \(\theta\)
  • \([\sum^{T}_{t=0}] \gamma^{t} r_t\) - total episodic reward


We can rewrite probability of generating trajectory \(\tau\):


Policy Gradients

p_{\theta}(\tau) = p_{\theta}(s_0, a_0, r_0, ..., s_T, a_T, r_T) = p(s_1) \prod\limits_{t=0}^T \pi_{\theta}(a_t|s_t) p(s_{t+1}|a_t,s_t)
\theta^{*} = \text{argmax}_{\theta} \, \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [ \sum^{T}_{t=0} \gamma^{t} r_t ]

Lets recall Reinforcement learning objective:

where:

  • \(\theta\) - parameters of our policy
  • \(p_{\theta}(\tau)\) - probability distribution over trajectories generated by policy \(\theta\)
  • \([\sum^{T}_{t=0}] \gamma^{t} r_t\) - total episodic reward

 

We can rewrite probability of generating trajectory \(\tau\):

 

Understanding Policy Gradient

What if we use behaviour cloning to learn a policy?

Cross Entropy-loss for each transition in dataset:

H(\overline{y}, y_t) = \frac{1}{|C|} \sum\limits^{|C|}_{j} - y_j\,log\,\overline{y}_{j} = - log\, \overline{y}_{a_t} \textcolor{red}{\frac{1}{|C|}}

0.2

0.7

0.1

\pi_{\theta}(*|s_t) = \overline{y} =

1

0

0

y =

Ground Truth at state \(s_t\):

Policy at \(s_t\):

= - log\, \pi_{\theta}(a_t|s_t) \, \textcolor{red}{c}

\(a_t\)

Understanding Policy Gradient

Gradients with behaviour clonning:

\nabla_{\theta} J_{BC}(\theta) = \mathbb{E}_{\textcolor{red}{\tau \sim D}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,\textcolor{red}{-} log\, \pi_{\theta}(a_{t}|s_{t})\,\textcolor{red}{c} \biggr]

Policy Gradients:

\nabla_{\theta} J(\theta) = \mathbb{E}_{\textcolor{blue}{\tau \sim p_{\theta}(\tau)}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{t}|s_{t}) \textcolor{blue}{r(\tau)} \biggr]

Goal is to minimize \(J_{BC}(\theta)\)

Goal is to maximize \(J(\theta)\)

\nabla_{\theta} J_{BC}(\theta) = \mathbb{E}_{\textcolor{red}{\tau \sim D}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\, log\, \pi_{\theta}(a_{t}|s_{t})\,\textcolor{red}{c} \biggr]

Goal is to maximize \(-J_{BC}(\theta)\)

BC trains policy to choose the same actions as the experts

PG trains policy to choose actions that leads to higher episodic returns!

Understanding Policy Gradient

Policy Gradients:

\nabla_{\theta} J(\theta) = \mathbb{E}_{\textcolor{blue}{\tau \sim p_{\theta}(\tau)}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{t}|s_{t}) \textcolor{blue}{r(\tau)} \biggr]

PG trains policy to choose actions that leads to higher episodic returns!

Problem with policy gradients

Probliem: hight variance!

\nabla_{\theta} J(\theta) = \mathbb{E}_{\textcolor{blue}{\tau \sim p_{\theta}(\tau)}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{t}|s_{t}) \textcolor{blue}{r(\tau)} \biggr]

Recal Tabular RL: Monte-Carlo Return has high variance!

Reducing Variance: Causality

\nabla_{\theta} J(\theta) \approx \textcolor{black}{\frac{1}{N} \sum\limits_{i=1}^{N}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{i,t}|s_{i,t}) \textcolor{red}{\biggl( \sum\limits_{t'=0}^{T} \gamma^{t'} r_{i,t'} \biggr)} \biggr]

Doesn't it look strange?

Causality principle: action at step \(t\) cannot affect reward at \(t'\) when \(t' < t\)

Reducing Variance: Causality

\nabla_{\theta} J(\theta) \approx \textcolor{black}{\frac{1}{N} \sum\limits_{i=1}^{N}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{i,t}|s_{i,t}) \textcolor{red}{\biggl( \sum\limits_{t'=0}^{T} \gamma^{t'} r_{i,t'} \biggr)} \biggr]

Doesn't it look strange?

Causality principle: action at step \(t\) cannot affect reward at \(t'\) when \(t' < t\)

\nabla_{\theta} J(\theta) \approx \textcolor{black}{\frac{1}{N} \sum\limits_{i=1}^{N}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{\textcolor{black}{i},t}|s_{\textcolor{black}{i},t}) \biggl( \textcolor{blue}{\sum\limits_{t'=t}^{T}} \gamma^{t'} r_{i,t'} \biggr) \biggr]

Later actions became less relevant!

\nabla_{\theta} J(\theta) \approx \textcolor{black}{\frac{1}{N} \sum\limits_{i=1}^{N}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{\textcolor{black}{i},t}|s_{\textcolor{black}{i},t}) \biggl(\textcolor{red}{\gamma^t} \textcolor{blue}{\sum\limits_{t'=t}^{T}} \gamma^{\textcolor{blue}{t'-t}} r_{i,t'} \biggr) \biggr]
\nabla_{\theta} J(\theta) \approx \textcolor{black}{\frac{1}{N} \sum\limits_{i=1}^{N}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{\textcolor{black}{i},t}|s_{\textcolor{black}{i},t}) \biggl(\textcolor{blue}{\sum\limits_{t'=t}^{T}} \gamma^{\textcolor{blue}{t'-t}} r_{i,t'} \biggr) \biggr]

Final Version:

Improving PG: Baseline

\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \biggl[ \nabla_{\theta}\,log\,p_{\theta}(\tau) (r(\tau) \textcolor{blue}{- b}) \biggr]

Updates policy proportionally to \(\tau (r) \):

Updates policy proportionally to how much \(\tau (r) \) is better than average:

\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \biggl[ \nabla_{\theta}\,log\,p_{\theta}(\tau) r(\tau) \biggr]

where:

b = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [r(\tau)]

Substracting baseline is unbiased in expectation!

(and often works better)

\mathbb{E} [\nabla_{\theta}\,log\,p_{\theta}(\tau) b] = \int p_{\theta}(\tau)\,\nabla_{\theta}\,log\,p_{\theta}(\tau)\,b\,d\tau = \int \,b\,\nabla_{\theta}\,p_{\theta}(\tau)\,d\tau =
= b\,\nabla_{\theta}\,\int \,p_{\theta}(\tau)\,d\tau = b\,\nabla_{\theta}\,1 = 0
\tau
p_{\theta}(\tau)
\textcolor{red}{r(\tau)}
p_{\theta}(\tau)
\textcolor{red}{r(\tau)}
\tau

Entropy Regularization

Value-based  algorithms (DQN, Q-learning, SARSA, etc.) use \(\epsilon\)-greedy policy to encourage exploration!

H(\pi_{\theta} (\cdot | s_t)) = - \sum_{a \in A} \pi_{\theta}(a|s_t)\, log\, \pi_{\theta}(a|s_t)

Entropy Regularization for strategy:

In policy-based algorithms(PG, A3C, PPO, etc.) we can utilize a more agile trick:   

Adding \(-H(\pi_{\theta})\) to a loss function:

  • encourage agent to act more randomly
  • It is still possible to learn any possible probability distribution on actions

Actor-Critic Alogrithms

Final Version with "causality improvement" and baseline

Now recall Value functions:

Q_{\pi}(s,a) = \mathbb{E}_{\pi} [\sum^{\infty}_{k=0} \gamma^{k} r_{t+k+1}|S_t=s, A_t=a ]

What is this?

\nabla_{\theta} J(\theta) \approx \textcolor{black}{\frac{1}{N} \sum\limits_{i=1}^{N}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{\textcolor{black}{i},t}|s_{\textcolor{black}{i},t}) \biggl(\textcolor{blue}{\sum\limits_{t'=t}^{T}} \gamma^{\textcolor{blue}{t'-t}} r_{i,t'} \textcolor{green}{- b} \biggr) \biggr]
V_{\pi}(s) = \mathbb{E}_{\pi} [\sum^{\infty}_{k=0} \gamma^{k} r_{t+k+1}|S_t=s]

Single point estimate of \(Q_{\pi_{\theta}}(s_{i,t},a_{i,t})\)

Actor-Critic Alogrithms

Combining  PG and Value Functions!

What about baseline?

Has lower variance than single point estimate!

\nabla_{\theta} J(\theta) \approx \textcolor{black}{\frac{1}{N} \sum\limits_{i=1}^{N}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{\textcolor{black}{i},t}|s_{\textcolor{black}{i},t}) \biggl(\textcolor{blue}{Q_{\pi_{\theta}}(s_{i,t}, a_{i,t})} \textcolor{green}{- b} \biggr) \biggr]
b = \mathbb{E}_{\tau \sim \pi_{\theta}} [r(\tau)] =
= \mathbb{E}_{a \sim \pi_{\theta}(a|s)} [Q_{\pi_{\theta}}(s,a)] =
= \textcolor{green}{V_{\pi_{\theta}}(s)}

Better account for causality here....

Advantage Actor-Critic: A2C

Combining  PG and Value Functions!

Advantage Function:

approximate with a sample

\nabla_{\theta} J(\theta) \approx \textcolor{black}{\frac{1}{N} \sum\limits_{i=1}^{N}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{\textcolor{black}{i},t}|s_{\textcolor{black}{i},t}) \biggl(\textcolor{blue}{Q_{\pi_{\theta}}(s_{i,t}, a_{i,t})- V_{\pi_{\theta}}(s_{i,t})} \biggr) \biggr]

how much choosing \(a_t\) is better than average policy

A(a,s) = Q_{\pi_{\theta}}(s, a)- V_{\pi_{\theta}}(s)
\nabla_{\theta} J(\theta) \approx \textcolor{black}{\frac{1}{N} \sum\limits_{i=1}^{N}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{\textcolor{black}{i},t}|s_{\textcolor{black}{i},t}) \biggl(\textcolor{blue}{A_{\pi_{\theta}}(s_{i,t}, a_{i,t})} \biggr) \biggr]

It is easier to learn only one function!

...but we can do better:

A(a,s) = \textcolor{black}{\mathbb{E}_{s' \sim p(s'|a,s)}[r(s,a) + \gamma E_{a' \sim \pi_{\theta}(s'|s')}[Q_{\pi_{\theta}}(a', s')]} - V_{\pi_{\theta}}(s_t)
= r(s,a) + \gamma \textcolor{blue}{\mathbb{E}_{s' \sim p(s'|a,s)}[V_{\pi_{\theta}}(s')]} - V_{\pi_{\theta}}(s)

Advantage Actor-Critic: A2C

Combining  PG and Value Functions!

Advantage Function:

how much choosing \(a_t\) is better than average policy

\nabla_{\theta} J(\theta) \approx \textcolor{black}{\frac{1}{N} \sum\limits_{i=1}^{N}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{\textcolor{black}{i},t}|s_{\textcolor{black}{i},t}) \biggl(\textcolor{blue}{A_{\pi_{\theta}}(s_{i,t}, a_{i,t})} \biggr) \biggr]
A_{\pi_{\theta}}(a_t,s_t) \approx r_t + \gamma V_{\pi_{\theta}}(s_{t+1}) - V_{\pi_{\theta}}(s_t)

It is easier to learn \(V\)-function as it depends on fewer arguments!

A2C Algorithm

  • Policy Improvement step:
    • Train actor parameters with Policy Gradient:
\nabla_{\theta} J(\theta) \approx \textcolor{black}{\frac{1}{N} \sum\limits_{i=1}^{N}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{\textcolor{black}{i},t}|s_{\textcolor{black}{i},t}) A_{\pi_{\theta}}(s_{i,t}, a_{i,t}) \biggr]
  • Policy Evaluation шаг:
    • Train Critic to estimate V-function (similar to DQN)
  • Sample {\(\tau\)} from \(\pi_{\theta}(a_t|s_t)\) (run the policy in the env)
\nabla_{\phi} L(\phi) \approx \textcolor{black}{\frac{1}{N} \sum\limits_{i=1}^{N}} \biggl[ \sum\limits_{t=0}^T \nabla_{\phi}\,\lVert(r_t + \gamma V_{\hat{\phi}}(s_{t+1})) - V_{\phi}(s_t)\rVert^2 \biggr]

Recall

Policy Iteration:

No Target Network (recall DQN) here, just stop the gradients.

\(\phi\): critic parameters

A2C: Learning

  • Policy Improvement step:
    • Train Actor head with Policy gradient
\nabla_{\theta} J(\theta) \approx \textcolor{black}{\frac{1}{N} \sum\limits_{i=1}^{N}} \biggl[ \sum\limits_{t=0}^T \nabla_{\theta}\,log\, \pi_{\theta}(a_{\textcolor{black}{i},t}|s_{\textcolor{black}{i},t}) A_{\pi_{\theta}}(s_{i,t}, a_{i,t}) \biggr]
  • Policy Evaluation step:
    • Train Critic head with MSE (similar to DQN)
  • Sample {\(\tau\)} from \(\pi_{\theta}(a_t|s_t)\) (run the policy)
\nabla_{\phi} L(\phi) \approx \textcolor{black}{\frac{1}{N} \sum\limits_{i=1}^{N}} \biggl[ \sum\limits_{t=0}^T \nabla_{\phi}\,\lVert(r_t + \gamma V_{\hat{\phi}}(s_{t+1})) - V_{\phi}(s_t)\rVert^2 \biggr]

Policy Iteration reminder:

No actual target network, no grads

\(\phi\): different set of parameters

Implementation Details: Architecture

\textcolor{red}{V(s)}

Asynchronous A2C: A3C

Answer: Parallel Computation!

We can't use Replay Memory, but we need to decorrelate our samples!

Each worker procedure:

  • Get network params from server
  • Generate samples
  • Compute gradients
  • Send gradients to parameter server

All workers run Asynchronously

Asynchronous A2C: A3C

Each worker procedure:

  • Get network params from server
  • Generate samples
  • Compute gradients
  • Send gradients to parameter server

All workers run Asynchronously

Pros:

  • Runs Faster

Cons:

  • You need N+1 parameter copies for N worksers
  • Stale Gradients problem

All workers run Asynchronously

Syncronised Parrallel Actor Critic

Solution:

  • Run all envs in parrallel
  •  Synchronize envs after each step
  •  Select all actions using only one network
  • Update networks every t steps

It's usually called A2C... again

Syncronised Parrallel Actor Critic

Pros:

  • You need to store only one network
  • More stable: No stale gradients

Cons:

  • A little slower than A3C

It's usually called A2C... again

A3C/A2C Results: 

Thank you for your attention!

06 - Policy Gradients

By supergriver

06 - Policy Gradients

  • 369