Entropy methods

for the Boltzmann equation

and its quantum variant

Thomas Borsoni

Séminaire ANCS, LMB

June 19, 2025

CERMICS, École des Ponts, France

Motivation

Long-time behavior of solutions to the

Boltzmann-Fermi-Dirac equation

Main result

entropy inequality

Boltzmann

entropy inequality

Boltzmann-Fermi-Dirac

Tool

Entropy methods (functional inequalities)

Goal

Entropy inequalities for the Boltzmann-Fermi-Dirac equation

\implies

Outline

  1. The (classical) Boltzmann equation

\(\mathrm{II})\) Trend to equilibrium

 2. The (quantum) Boltzmann-Fermi-Dirac equation

\(\mathrm{I})\) Boltzmann equations

 3. Entropies and equilibria

 1. The entropy method

 2. Overview of entropy inequalities

 3. Transfer from Boltzmann to Boltzmann-Fermi-Dirac

  1. The (classical) Boltzmann equation

 2. The (quantum) Boltzmann-Fermi-Dirac equation

\(\mathrm{I})\) Boltzmann equations

 3. Entropies and equilibria

\(\mathrm{II})\) Trend to equilibrium

 1. The entropy method

 2. Overview of entropy inequalities

 3. Transfer from Boltzmann to Boltzmann-Fermi-Dirac

(\partial_t + v \cdot \nabla_x) g_{t,x}(v) = Q(g_{t,x})(v)

\(g \equiv g_{t,x}(v)\) density of molecules

+
x

the (classical) Boltzmann equation

v

Boltzmann equation:

v
v_*
v'
v'_*
\begin{align*} v+v_*&=v'+v'_* \\ \frac12|v|^2 + \frac12|v_*|^2 &= \frac12|v'|^2 + \frac12|v'_*|^2 \\ \end{align*}

Conservation laws

Collision operator:

\newcommand{\dd}{\mathrm{d}} Q_{\textcolor{green}{0}}(g)(v) = \iint_{\R^3 \times \mathbb{S}^2} [g(v') g(v'_*) - g(v) g(v_*)] \; B \; \dd v_* \, \dd \sigma
\begin{align*} v' = \frac{v+v_*}{2} + \frac{|v-v_*|}{2} \; \sigma \\ v'_* = \frac{v+v_*}{2} - \frac{|v-v_*|}{2} \; \sigma\\ \end{align*}
\newcommand{\Sb}{\mathbb{S}} \sigma \in \Sb^2
\implies

(momentum)

(energy)

     \(B \equiv B(v,v_*, \sigma) > 0 \)  \(\leftrightarrow\)   interaction potential

Collision kernel:

[A. Greg: Kinetic theory of gases, wikipedia.]

Statistical description of a monoatomic gas

\partial_t g_{t}(v) = Q_{\textcolor{green}{0}}(g_{t})(v)

\(g \equiv g_{t}(v)\) density of molecules

+
x

the space-homogeneous

(classical) Boltzmann equation

v
  • Boltzmann equation
v
v_*
v'
v'_*
\begin{align*} v+v_*&=v'+v'_* \\ \frac12|v|^2 + \frac12|v_*|^2 &= \frac12|v'|^2 + \frac12|v'_*|^2 \\ \end{align*}

Conservation laws

(momentum)

(energy)

[A. Greg: Kinetic theory of gases, wikipedia.]

v
v
\textcolor{blue}{u}
\textcolor{blue}{\sqrt{T}}
M^{g_0}_{\textcolor{green}{0}}(v) = \textcolor{blue}{\rho}\, (2 \pi \textcolor{blue}{T})^{-\frac32} \, \exp \left(-\frac{|v-\textcolor{blue}{u}|^2}{2 \, \textcolor{blue}{T}} \right)
  • Equilibrium
g_t \underset{t \to \infty}{\to} M^{g_0}_{\textcolor{green}{0}}

expected behaviour

g_0

Maxwellian

distribution

Entropy and equilibrium

The (classical) Boltzmann entropy functional \(H_{\textcolor{green}{0}} \)

2.  \(D_{\textcolor{green}{0}}(g) = 0 \iff g =M_{\textcolor{green}{0}}^g \),

characterization of equilibrium

M^g_{\textcolor{green}{0}}(v) = \textcolor{blue}{\rho}\, (2 \pi \textcolor{blue}{T})^{-\frac32} \, \exp \left(-\frac{|v-\textcolor{blue}{u}|^2}{2 \, \textcolor{blue}{T}} \right)

Boltzmann's H Theorem

1. If \(\partial_t g_t = Q_{\textcolor{green}{0}}(g_t)\), then

\(2^{nd}\) principle of thermodynamics

\newcommand{\dd}{\mathrm{d}} \frac{\dd}{\dd t}H_{\textcolor{green}{0}} (g_t) = - D_{\textcolor{green}{0}}(g_t) \leq 0

The (classical) Boltzmann entropy dissipation functional \(D_{\textcolor{green}{0}}\)

\newcommand{\dd}{\mathrm{d}} D_{\textcolor{green}{0}} (g) := \frac14\iiint_{\R^3 \times \R^3 \times \mathbb{S}^2} (g' g'_* - g g_*) \log \frac{g'g'_*}{gg_*} \; B(v,v_*,\sigma) \, \dd \sigma \, \dd v\, \dd v_*
\newcommand{\dd}{\mathrm{d}} H_{\textcolor{green}{0}} (g) := \int_{\R^3} (g \log g - g)(v) \, \dd v

  1. The (classical) Boltzmann equation

 2. The (quantum) Boltzmann-Fermi-Dirac equation

\(\mathrm{I})\) Boltzmann equations

 3. Entropies and equilibria

\(\mathrm{II})\) Trend to equilibrium

 1. The entropy method

 2. Overview of entropy inequalities

 3. Transfer from Boltzmann to Boltzmann-Fermi-Dirac

\partial_t f_{t}(v) = Q_{\textcolor{purple}{\delta}}(f_{t})(v)

\(f \equiv f_{t}(v)\) density of fermions

the space-homogeneous

(quantum) Boltzmann-Fermi-Dirac equation

  • Boltzmann-Fermi-Dirac equation
\begin{align*} v+v_*&=v'+v'_* \\ \frac12|v|^2 + \frac12|v_*|^2 &= \frac12|v'|^2 + \frac12|v'_*|^2 \\ \end{align*}

Conservation laws

(momentum)

(energy)

v
v_*
v'
v'_*

Pauli exclusion principle

0 \leq f_{t} \leq \frac{1}{\textcolor{purple}{\delta}}
0 < \textcolor{purple}{\delta} \ll 1
Q_{\color{purple} \delta}(f)(v) = \iint_{\R^3 \times \mathbb{S}^2} \left[f' f'_* (1- \textcolor{purple}{\delta} f)(1- \textcolor{purple}{\delta} f_*) - f f_* (1 - \textcolor{purple}{\delta} f')(1-\textcolor{purple}{\delta} f'_*) \right] B \; \mathrm{d} v_* \, \mathrm{d} \sigma
  • Collision operator
\frac{1}{\textcolor{purple}{\delta}}
v
\frac{1}{\textcolor{purple}{\delta}}
v
  • Equilibrium

Fermi-Dirac 

statistics

\frac{1}{\textcolor{purple}{\delta}}
v

Entropy and equilibrium

2.  \(D_{\textcolor{purple}{\delta}}(g) = 0 \iff g =M_{\textcolor{purple}{\delta}}^g \),

characterization of equilibrium

M^g_{\textcolor{purple}{\delta}}(v) = \frac{\exp \left(\textcolor{blue}{a}_{\textcolor{purple}{\delta}} - \textcolor{blue}{b}_{\textcolor{purple}{\delta}} \, |v-\textcolor{blue}{u}|^2 \right)} {1 + \textcolor{purple}{\delta} \exp \left(\textcolor{blue}{a}_{\textcolor{purple}{\delta}} - \textcolor{blue}{b}_{\textcolor{purple}{\delta}} \, |v-\textcolor{blue}{u}|^2 \right)}

Boltzmann-Fermi-Dirac H Theorem

1. If \(\partial_t f_t = Q_{\textcolor{purple}{\delta}}(f_t)\), then

\(2^{nd}\) principle of thermodynamics

\newcommand{\dd}{\mathrm{d}} \frac{\dd}{\dd t}H_{\textcolor{purple}{\delta}} (f_t) = - D_{\textcolor{purple}{\delta}}(f_t) \leq 0

The (quantum) Boltzmann-Fermi-Dirac entropy dissipation functional \(D_{\textcolor{purple}{\delta}}\)

\newcommand{\dd}{\mathrm{d}} D_{\textcolor{purple}{\delta}} (g) := \frac14\iiint_{\R^3 \times \R^3 \times \mathbb{S}^2} (f' f'_* (1-\textcolor{purple}{\delta}f) (1-\textcolor{purple}{\delta}f_*) - f f_* (1-\textcolor{purple}{\delta}f') (1-\textcolor{purple}{\delta}f'_*)) \log \frac{f' f'_* (1-\textcolor{purple}{\delta}f) (1-\textcolor{purple}{\delta}f_*)}{f f_* (1-\textcolor{purple}{\delta}f') (1-\textcolor{purple}{\delta}f'_*)} \; B(v,v_*,\sigma) \, \dd \sigma \, \dd v\, \dd v_*

The (quantum) Fermi-Dirac entropy functional \(H_{\textcolor{purple}{\delta}} \)

\newcommand{\dd}{\mathrm{d}} H_{\textcolor{purple}{\delta}} (f) := \int_{\R^3} f \log f + \textcolor{purple}{\delta}^{-1}(1 - \textcolor{purple}{\delta} f) \log (1 - \textcolor{purple}{\delta} f)

  1. The (classical) Boltzmann equation

 2. The (quantum) Boltzmann-Fermi-Dirac equation

\(\mathrm{I})\) Boltzmann equations

 3. Entropies and equilibria

\(\mathrm{II})\) Trend to equilibrium

 1. The entropy method

 2. Overview of entropy inequalities

 3. Transfer from Boltzmann to Boltzmann-Fermi-Dirac

Fermi-Dirac entropy

Boltzmann entropy

H_{\textcolor{green}{0}}(g) = \int g \log g - g
H_{\textcolor{purple}{\delta}}(f) = \int f \log f + {\textcolor{purple}{\delta}}^{-1} (1 - {\textcolor{purple}{\delta}} f) \log (1-{\textcolor{purple}{\delta}} f)
M_{\textcolor{green}{0}}(v) = e^{a - b|v-u|^2}
\displaystyle M_{\textcolor{purple}{\delta}}(v) = \frac{e^{a - b|v-u|^2}}{1 + \textcolor{purple}{\delta} e^{a - b|v-u|^2}}

Equilibrium: Fermi-Dirac statistics

Equilibrium: Maxwellian

entropies and equilibria

Boltzmann

Boltzmann-Fermi-Dirac

Fermi-Dirac entropy

H_{\textcolor{green}{0}}(g) = \int \Phi_{\textcolor{green}{0}}(g)
H_{\textcolor{purple}{\delta}}(f) = \int \Phi_{\textcolor{purple}{\delta}}(f)
M_{\textcolor{green}{0}}(v) = (\Phi_{\textcolor{green}{0}}')^{-1} \left(\alpha + \beta \cdot v + \gamma |v|^2 \right)
\displaystyle M_{\textcolor{purple}{\delta}}(v) = (\Phi_{\textcolor{purple}{\delta}}')^{-1} \left(\alpha + \beta \cdot v + \gamma |v|^2 \right)

Equilibrium: Fermi-Dirac statistics

Equilibrium: Maxwellian

entropies and equilibria

Boltzmann

Boltzmann-Fermi-Dirac

\Phi_{\textcolor{purple}{\delta}}'(x) = \log \left(\frac{x}{1 - \textcolor{purple}{\delta} x} \right)
\Phi_{\textcolor{green}{0}}' = \log

entropy    \(\displaystyle H : h \mapsto \int \Phi(h)\)          \(\Phi\)    \(\mathcal{C}^2\) st. convex

equilibrium 

M = (\Phi')^{-1} (\alpha \, \text{mass} + \beta \cdot \text{momentum} + \gamma \, \text{energy})

Boltzmann entropy

relative entropy to equilibrium

\(\displaystyle H : f \mapsto \int \Phi(f)\)                             \(\Phi\)    \(\mathcal{C}^2\) st. convex

equilibrium 

M^f = (\Phi')^{-1} (\alpha_f\, \text{mass} + \beta_f \cdot \text{momentum} + \gamma_f \, \text{energy})

relative entropy to equilibrium

H(f|M^f) := H(f) - H(M^f) \geq 0

Proposition 1.

\newcommand{\dd}{\mathrm{d}} H(f|M^f) = \int_0^1 (1-\tau) \left(\int (f - M^f)^2 \, \Phi''((1-\tau) M^f + \tau f) \right) \dd \tau

Taylor representation of the relative entropy to equilibrium

main theorem

Bonus: generalized \(L^p_\varpi\) Csiszár-Kullback-Pinsker

2024?

entropy

  1. The (classical) Boltzmann equation

 2. The (quantum) Boltzmann-Fermi-Dirac equation

\(\mathrm{I})\) Boltzmann equations

 3. Entropies and equilibria

\(\mathrm{II})\) Trend to equilibrium

 1. The entropy method

 2. Overview of entropy inequalities

 3. Transfer from Boltzmann to Boltzmann-Fermi-Dirac

- Existence & stability of solutions to homogeneous BFD for cut-off hard potentials

Lu, Wennberg

Existence and uniqueness of solutions to inhomogeneous BFD for cut-off kernels

Dolbeault

- Relaxation to equilibrium  of such solutions:

                             either \(f_0 =\)                      or    \(f_t \; \underset{t \to \infty}{\rightarrow}\)

Derivation of the equation from particles system (partially formal)

Benedetto, Castella, Esposito, Pulvirenti

at which rate?

saturated state

Fermi-Dirac stat.

Some results on BFD

  1. The (classical) Boltzmann equation

 2. The (quantum) Boltzmann-Fermi-Dirac equation

\(\mathrm{I})\) Boltzmann equations

 3. Entropies and equilibria

\(\mathrm{II})\) Trend to equilibrium

 1. The entropy method

 2. Overview of entropy inequalities

 3. Transfer from Boltzmann to Boltzmann-Fermi-Dirac

\partial_t f_t = Q(f_t)

\(D(g) \gtrsim {H(g|M^g)}^{1+\alpha}\)

\displaystyle \frac{\mathrm{d}}{\mathrm{d} t} H(f_t|M^{f_0}) = - D(f_t)

\(D(g) \geqslant C H(g|M^g)\)

the entropy method

Relative entropy to equilibrium:

\(H(f_t|M^{f_0}) \lesssim t^{-1/\alpha}\)

\(H(f_t|M^{f_0}) \lesssim e^{-Ct} \)

Csiszár-Kullback-Pinsker

\|f_t - M^{f_0}\|_{L^1}^2 \lesssim H(f_t|M^{f_0})
H(g|M^g) = H(g) - H(M^g) \geq 0

  1. The (classical) Boltzmann equation

 2. The (quantum) Boltzmann-Fermi-Dirac equation

\(\mathrm{I})\) Boltzmann equations

 3. Entropies and equilibria

\(\mathrm{II})\) Trend to equilibrium

 1. The entropy method

 2. Overview of entropy inequalities

 3. Transfer from Boltzmann to Boltzmann-Fermi-Dirac

D_{\textcolor{green}{0}}(g) \gtrsim H_{\textcolor{green}{0}}(g|M_{\textcolor{green}{0}}^g)^{1 \textcolor{grey}{+ \alpha}}

Boltzmann

Carlen, Carvalho, Desvillettes, Toscani, Villani

1992 \(\to\) 2003

Landau

D_{Landau,\textcolor{purple}{\delta}}(f) \gtrsim H_{\textcolor{purple}{\delta}}(f |M_{\textcolor{purple}{\delta}}^f)^{1 \textcolor{grey}{+ \alpha}}

LAndau-Fermi-Dirac

Desvillettes, Villani

2000

Alonso, Bagland, Desvillettes, Lods

2020-2021

D_{\textcolor{purple}{\delta}}(f) \gtrsim H_{\textcolor{purple}{\delta}}(f|M_{\textcolor{purple}{\delta}}^f)^{1 \textcolor{grey}{+ \alpha}}

Boltzmann-FERMI-DIRAC

Overview of entropy inequalities for kinetic equations

Fokker-Planck

log-Sobolev inequality

Fokker-Planck-Fermi-Dirac

D_{Landau, \, \textcolor{green}{0}}(g) \gtrsim H_{\textcolor{green}{0}}(g|M_{\textcolor{green}{0}}^g)^{1 + \textcolor{grey}{\alpha}}
D_{FP, \, \textcolor{green}{0}}(g) \gtrsim H_{\textcolor{green}{0}}(g|M_{\textcolor{green}{0}}^g)
D_{FP,\textcolor{purple}{\delta}}(g) \gtrsim H_{\textcolor{purple}{\delta}}(g|M_{\textcolor{purple}{\delta}}^g)

generalized

Gross

1975

+Kac, BGK

Toscani,...

\(\leq\) 1999

Carillo, Laurençot, Rosado

2009

D_{FP, \, \textcolor{green}{0}}(g) = \int |\nabla \sqrt{g}|^2 \equiv I(g)
\partial_t f_t = \Delta_v f_t + \nabla_v \cdot (v f_t)
D_{Landau, \, \textcolor{green}{0}}(g) = \iint \Psi(|v-v_*|) |\Pi_{(v-v_*)^\perp}(\nabla_v - \nabla_{v_*}) \sqrt{g g_*}|^2
\partial_t f_t = \nabla_v \cdot \int_{\R^3} \Psi(|v-v_*|) \, \Pi_{(v-v_*)^\perp} [f_* \nabla_v f - f \nabla_{v_*} f_*] \mathrm{d} v_*
D_{\textcolor{green}{0}}(g) = \iiint (f' f'_* - f f_*) \log \frac{f'f'_*}{ff_*}\, B \, \mathrm{d} \sigma \, \mathrm{d} v \, \mathrm{d} v_*
\partial_t f_t = \iint_{\R^3 \times \mathbb{S}^2} (f' f'_* - f f_*) \, B \, \mathrm{d} \sigma \, \mathrm{d} v_*
H_{\textcolor{green}{0}}(g|M_{\textcolor{green}{0}}^g) = \int g \log \frac{g}{M_{\textcolor{green}{0}}^g}

our goal:

  1. The (classical) Boltzmann equation

 2. The (quantum) Boltzmann-Fermi-Dirac equation

\(\mathrm{I})\) Boltzmann equations

 3. Entropies and equilibria

\(\mathrm{II})\) Trend to equilibrium

 1. The entropy method

 2. Overview of entropy inequalities

 3. Transfer from Boltzmann to Boltzmann-Fermi-Dirac

transfer of inequalities

D_{\textcolor{green}{0}}(g) \gtrsim H_{\textcolor{green}{0}}(g|M_{\textcolor{green}{0}}^g)^{1 + \alpha}

We know:

\gtrsim \; \; D_{\textcolor{green}{0}}\left(\frac{f}{1 - \textcolor{purple}{\delta} f}\right)

entropy inequality for Boltzmann

\gtrsim \; \; H_{\textcolor{green}{0}} \left(\frac{f}{1- \textcolor{purple}{\delta} f} \left| M_{\textcolor{green}{0}}^{\frac{f}{1- \textcolor{purple}{\delta} f}} \right. \right)^{1 + \alpha}

entropy inequality for Boltzmann-Fermi-Dirac

We want:

D_{\textcolor{purple}{\delta}}(f) \gtrsim D_{\textcolor{green}{0}}\left(\frac{f}{1 - \textcolor{purple}{\delta} f}\right)

Fermi-Dirac dissipation of \(f\)

Boltzmann dissipation of \( \displaystyle \frac{f}{1-\textcolor{purple}{\delta} f} \)

\( \gtrsim\)

D_{\textcolor{purple}{\delta}}(f) \textcolor{red} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \textcolor{red}{\gtrsim} \;H_{\textcolor{purple}{\delta}}(f|M_{\textcolor{purple}{\delta}}^f)^{1 + \alpha}

?

H_{\textcolor{green}{0}}\left(\left.\frac{f}{1 - \textcolor{purple}{\delta} f}\right|M^{\frac{f}{1 - \textcolor{purple}{\delta} f}}_{\textcolor{green}{0}}\right) \geqslant H_{\textcolor{purple}{\delta}}(f|M^f_{\textcolor{purple}{\delta}}).

(as soon as all terms make sense)

Boltzmann relative entropy to equilibrium of  \(\displaystyle \frac{f}{1-\textcolor{purple}{\delta} f}\)

Fermi-Dirac relative entropy to equilibrium of \(f\)

Theorem 2.

f \in L^1_2(\R^3)
\frac{f}{1 - \delta f} \in L^1_2(\R^3) \cap L \log L(\R^3),
\displaystyle 0 \leqslant f < \frac{1}{\delta}

For all

such that

and

\delta > 0

and

comparison of relative entropies

TB 2024

R_g : \delta \in \R_+ \mapsto H_{\delta}\left( \frac{g}{1 + \delta g} \left|M^{\frac{g}{1 + \delta g}}_{\delta} \right. \right).

Let

Then \(R_g\) is nonincreasing on \(\R_+\).

Proposition 3.

0 \leq g \in L^1_2(\R^3) \cap L \log L(\R^3)

and

Proof of the theorem

proof of the proposition

Key elements:

  • Taylor representation of the relative entropy to eq.
  • general link between entropy and equilibrium
  • fact that \(x \mapsto -\left(\frac{x}{1+\delta x} \right)^2\) is decreasing

Other technicalities:

  • differentiability on \(\R_+^*\)
  • continuity at \(\delta = 0^+\)

general considerations

specific use of Fermi-Dirac features

Show \(R_g' \leq 0\) on \(\R_+^*\) and \(R_g\) continuous on \(\R_+ \)

2024

Proposition 4.

0\leqslant f \in L^1_2(\R^3)
\displaystyle \textcolor{black}{ 1 - \textcolor{purple}{\delta} f \geqslant} \kappa,

For all

such that

\textcolor{purple}{\delta} \textcolor{black}{> 0,} \;\; \kappa \textcolor{black}{\in (0,1)}

and

Classical / Fermi-Dirac equivalence

\textcolor{black}{H_{\textcolor{purple}{\delta}}(f|M^f_{\textcolor{purple}{\delta}}) \leqslant H_{\textcolor{green}{0}}\left(\left.\frac{f}{1 - \textcolor{purple}{\delta} f}\right|M^{\frac{f}{1 - \textcolor{purple}{\delta} f}}_{\textcolor{green}{0}}\right) \leqslant} \textcolor{black}{e}^{ \textcolor{black}{16} \, { \textcolor{black}{(}\kappa^{\textcolor{black}{-1}} \textcolor{black}{- 1)} } } \textcolor{black}{\; H_{\textcolor{purple}{\delta}}(f|M^f_{\textcolor{purple}{\delta}})} \phantom{\frac{1-\kappa}{\kappa}}
\textcolor{black}{D_{\textcolor{purple}{\delta}}(f) \leqslant D_{\textcolor{green}{0}}\left(\frac{f}{1 - \textcolor{purple}{\delta} f}\right) \leqslant} \kappa^{\textcolor{black}{-4}} \textcolor{black}{ \; D_{\textcolor{purple}{\delta}}(f)}

For Boltzmann/BFD (& Landau/LFD) dissipations:

entropy inequality for Boltzmann

entropy inequality for Boltzmann-Fermi-Dirac

\kappa
\iff
1
\textcolor{purple}{\delta} f
\kappa
D_{\textcolor{purple}{\delta}}(f) \gtrsim H_{\textcolor{purple}{\delta}}(f|M^f_{\textcolor{purple}{\delta}}), \; \; \forall f \in \mathcal{F}
\forall g \in \mathcal{G}, \; \; D_{\textcolor{green}{0}}\left(g\right) \gtrsim H_{\textcolor{green}{0}}\left(\left.g\right|M^{g}_{\textcolor{green}{0}}\right)

Conclusion

2024

Thank you for your attention!

TB: Extending Cercignani's conjecture results from Boltzmann to Boltzmann-Fermi-Dirac equation, J. Stat. Phys. (2024).

Bonus: generalized \(L^p_\varpi\) Csiszár-Kullback-Pinsker

General weighted \(L^p\) Csiszár-Kullback-Pinsker

\|f-M^f\|^2_{L^p_{\varpi}} \leqslant {\small C_{\Phi, \varpi, p, f, M^f}} \; H(f|M^f),

Proposition.

(general entropy)

\(\displaystyle H(f) = \int\Phi(f)\),   \(\Phi \; \; \mathcal{C}^2\) st. convex,   \(M^f\) equilibrium, and

C_{\Phi, \varpi, p,f,M^f} = \left(\int_0^1 (1-\tau) \left\| \Phi''((1-\tau)M^f + \tau f)^{-1} \right\|_{L^{\frac{p}{2-p}}_{\varpi^2}}^{-1} \, \mathrm{d} \tau \right)^{-1}

For any \(f\), any \(p \in [1,2]\) and \(\varpi\) weight,

\|f-M_0^f\|^2_{L^p_{\varpi}} \leqslant 2 \max \left(\|f\|_{L^{\frac{p}{2-p}}_{\varpi^2}}, \|M_0^f\|_{L^{\frac{p}{2-p}}_{\varpi^2}} \right)\, H_{0}(f|M_0^f),

Corollary.

For any \(0\leq f \in L^1_2\cap L \log L(\R^3)\), \(p \in [1,2]\) and \(\varpi : \R^3 \to \R_+\),

(Boltzmann entropy)

\(\displaystyle H_0\) Boltzmann entropy and \(M_0^f\) Maxwellian.

[simplified]

Presentation Besancon

By Thomas Borsoni

Presentation Besancon

  • 2