Quantum

Computing

|        |

Quantum

Computing

一些先備知識、觀念

Introduction

What is

Quantum Computing

說說看你們對量子運算的看法吧!

優質影片欣賞

Quantum Computer

首先量子運算要有量子電腦

QC is fast??

量子電腦比較快嗎?

如果是,那量子電腦為什麼比較快?

那我們為什麼需要量子電腦?

有什麼開發量子電腦的當務之急?

它的原理是什麼?

我們要怎麼編寫量子電腦程式?

Principles

量子位元

同時是0也是1 (????)

Principles

光偏振:電場振動方向

Principles

測量:光束通過偏振片

一個光子通過偏振片 (?)

Principle

量子位元

垂直偏振

水平偏振

斜向偏振

Applications

量子電腦可以促進以下領域的發展:

  • 科學領域的新突破
  • 挽救生命的藥物
  • 快速診斷疾病的機器學習方法
  • 可以使設備和結構更高效的材料
  • 退休後的理財策略
  • 快速引導如救護車等資源的演算法
  • 為人類謀幸福

Game

Qubit & Concepts

Qubit

經典位元 (binary digit, bit):一個0或1

 

量子位元 (quantum bit, qubit):

0或1,或0和1的疊加態

\(|\psi \rangle =\alpha |0\rangle +\beta |1\rangle \quad \alpha ,\beta \in {\mathbb {C}}\)

其中\(|\alpha| ^ 2\)是測量它之後觀測到\(0\)的機率;\(|\beta| ^ 2\)是測量它之後觀測到\(1\)的機率,所以

\(|\alpha| ^ 2 + |\beta| ^ 2 = 1\)

Qubit - matrix

一個量子位元也可以表示成一個向量:

 

$$\begin{bmatrix} \alpha\\ \beta \end{bmatrix}$$

 

\(|\alpha| ^ 2\)是測量它之後觀測到\(0\)的機率;

\(|\beta| ^ 2\)是測量它之後觀測到\(1\)的機率

Qubit - matrix

量子位元也可以表示0或1:

 

$$|0\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix}, |1\rangle = \begin{bmatrix} 0\\ 1 \end{bmatrix}$$

 

所以它理論上可以做到任何經典運算能做的事

例如加減乘除

bloch sphere

或許你覺得矩陣很複雜:

但我覺得這其實更複雜 QQ

bloch sphere

Superposition

不同於經典位元,量子位元可以這樣

$$|+\rangle = \begin{bmatrix} \frac{1}{\sqrt 2}\\ \frac{1}{\sqrt 2} \end{bmatrix}$$

 

$$|-\rangle = \begin{bmatrix} \frac{1}{\sqrt 2}\\ \frac{-1}{\sqrt 2} \end{bmatrix}$$

Entanglement

兩個量子位元有時可以纏結在一起

Entanglement

為了表示兩個量子位元纏結

我們必須引進雙量子系統

如果其中一個量子是\(|\psi \rangle\),另一個量子是 \(|\delta \rangle\) 那麼兩個量子寫在一起就是 \(|\psi\rangle\otimes|\delta\rangle\)

\begin{bmatrix} a \\ b \end{bmatrix} \otimes \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a \begin{bmatrix} c \\ d \end{bmatrix} \\ b \begin{bmatrix} c \\ d \end{bmatrix} \end{bmatrix} = \begin{bmatrix} ac \\ ad \\ bc \\ bd \end{bmatrix}

Entanglement

比如說其中一個量子是\(|+ \rangle\),另一個量子是 \(|0 \rangle\) 那麼兩個量子寫在一起就是 \(|+\rangle\otimes|0 \rangle = |+0\rangle\)

\begin{bmatrix} \frac{1}{\sqrt 2} \\ \frac{1}{\sqrt 2} \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt 2} \\ 0\\ \frac{1}{\sqrt 2} \\ 0 \end{bmatrix}

Entanglement

有時候雙量子的量子態無法拆成兩個獨立的量子態

就稱為量子纏結

\begin{bmatrix} ? \\ ? \end{bmatrix} \otimes \begin{bmatrix} ? \\ ? \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt 2} \\ 0 \\ 0 \\ \frac{1}{\sqrt 2}\end{bmatrix}

Entanglement

兩個量子位元纏結之後無法用bloch sphere表示

只能用 qsphere 同時表示兩個位元

Simple

Quantum Gates

Flip Gate

量子運算也有NOT閘,叫做 Pauli X gate,用途就是把0變成1,反之亦然

\(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\)

Flip Gate

它的作用很像沿 X 軸轉 180 度

\(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\)

Hadamard gate

達到這種奇怪狀態的方法是 \(H\) 閘,右邊那種狀態叫做疊加態

$$\frac{1}{\sqrt 2} \begin{bmatrix}1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt 2} \\ \frac{1}{\sqrt 2}\end{bmatrix}$$

Hadamard gate

它就是沿 \(X=Z\) 軸轉 180 度

$$\frac{1}{\sqrt 2} \begin{bmatrix}1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt 2} \\ \frac{1}{\sqrt 2}\end{bmatrix}$$

CNOT Gate

cnot gate 是雙量子位元邏輯閘

它的作用是:

如果一個特定 bit 是1,則會反轉\((X)\)另一個 bit

 

所以如果這個特定 bit 是疊加態,另一個 bit 會與之纏結

\begin{bmatrix}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}

Rroblems

我知道很難想像 QAQ 所以來做例題吧

Description

我們假設所有 qubit 的初始狀態都是 \(|0\rangle\)

嘗試對這些 qubit 使用\(X, H, CNOT\)使它們變成指定狀態

Rroblem 1

|1\rangle

Solution 1

X

Rroblem 2

|+\rangle

Solution 2

H

Rroblem 3

|-\rangle

Solution 3

X
H

Rroblem 4

\frac{|00\rangle + |11\rangle}{\sqrt 2}

Solution 4

X(0)
CNOT(0,1)

Entanglement

最簡單的纏結可以經由疊加態產生

首先將其中一個 bit 變成疊加態

\begin{bmatrix} \frac{1}{\sqrt 2} \\ \frac{1}{\sqrt 2} \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt 2} \\ 0\\ \frac{1}{\sqrt 2} \\ 0 \end{bmatrix}

然後再把兩個 bit 丟進 cnot gate

cnot gate 的作用是:

如果一個特定 bit 是1,則會反轉另一個 bit

 

所以如果這個特定 bit 是疊加態,另一個 bit 只能跟它纏結在一起了

$$\begin{bmatrix}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt 2} \\ 0\\ \frac{1}{\sqrt 2} \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt 2} \\ 0 \\ 0 \\ \frac{1}{\sqrt 2}\end{bmatrix}$$

Entanglement

Rroblem 5

\frac{|00\rangle - |11\rangle}{\sqrt 2}

Rroblem 6

\frac{|01\rangle + |11\rangle}{\sqrt 2}

Rroblem 7

\frac{|00\rangle - |01\rangle - |10\rangle + |11\rangle}{2}

Break time

Quantum

Programming

量子電腦動起來

Build a

Quantum Circuit

Python is powerful... and fast;

plays well with others;

runs everywhere;

is friendly & easy to learn;

is Open.

Python

Google Colab

線上Python整合開發環境

提供免費GPU

多樣的套件

 

簡單, 快速且

免費

Qiskit

!pip install qiskit
from qiskit import *
from qiskit.visualization import *
from qiskit.tools import job_monitor
# 2 量子位元 (qubits) / 2 經典位元 (classical bits)
circuit = QuantumCircuit(2, 2)

# 將qubit通過hadamard閘
circuit.h(0)

# CNOT, Controlled NOT.
# 如果第一個qubit是1,則將第二個qubit翻轉 (flip)
circuit.cx(0, 1)

# 測量qubit的值到對應的經典位元
circuit.measure([0, 1], [0, 1])

A Simple Circuit

circuit.draw() # ASCII ART!!!!!!

A Simple Circuit

circuit.draw(output='mpl') # use matplotlib

A Simple Circuit

Execute the Circuit

IBM Q Experience

IBM Q Experience

登入並取得 Token

IBM Q Experience

登入並取得 Token

# please paste your token here
IBMQ.save_account("TOKEN")
# load your account after save it
IBMQ.load_account()

Select backend

provider = IBMQ.get_provider("ibm-q")
backend = provider.get_backend("ibmq_burlington")

It's time to run code

job = execute(circuit, backend, shots=512)
job_monitor(job) # 監控有多少工作正在排隊

稍候以下訊息出現 ...

Job Status: job has successfully run

counts = job.result().get_counts()
plot_histogram(counts)

Is the result in expected ?

Simulator

backend = Aer.get_backend("qasm_simulator")
job = execute(circuit, backend, shots=512)
# job_monitor(job)

counts = job.result().get_counts()
plot_histogram(counts)

Statevector

backend = Aer.get_backend("statevector_simulator")
job = execute(circuit, backend)
# job_monitor(job)

statevec = job.result().get_statevector()
plot_bloch_multivector(statevec)

發生什麼事?

Statevector

circuit = QuantumCircuit(2, 2)
circuit.h(0)
circuit.cx(0, 1)
# circuit.measure([0, 1], [0, 1])

job = execute(circuit, backend)
# job_monitor(job)

statevec = job.result().get_statevector()
plot_bloch_multivector(statevec)

發生什麼事?

Qsphere

circuit = QuantumCircuit(2, 2)
circuit.h(0)
circuit.cx(0, 1)
# circuit.measure([0, 1], [0, 1])

job = execute(circuit, backend)
# job_monitor(job)

statevec = job.result().get_statevector()
plot_state_qsphere(statevec)

Unitary

backend = Aer.get_backend("unitary_simulator")
job = execute(circuit, backend)
# job_monitor(job)

unitary = job.result().get_unitary()
print(unitary)

發生什麼事?

Simulators

# quantum assembly simulator
plot_histogram(execute(circuit, backend=Aer.get_backend("qasm_simulator"), shots=1024).result().get_counts())
# statevector simulator
plot_bloch_multivector(execute(circuit, Aer.get_backend("statevector_simulator")).result().get_statevector())
# unitary simulator
print(execute(c, Aer.get_backend("unitary_simulator")).result().get_unitary())
# qsphere simulator
plot_state_qsphere(execute(circuit, Aer.get_backend("statevector_simulator")).result().get_statevector())

Quantum Gates

Quantum Gates

Rotation Gates

circuit = q.QuantumCircuit(1)

# 翻轉 (flip) 閘
circuit.x(0)
circuit.y(0)
circuit.z(0)

Rotation Gates

circuit = q.QuantumCircuit(1)

# hadamard 閘,通常拿來製造疊加態
circuit.h(0)

Rotation Gates

circuit = q.QuantumCircuit(1)

# 旋轉閘:axis(angle, bit)
circuit.rx(Math.pi, 0)
circuit.ry(Math.pi/2, 0)
circuit.rz(1.8, 0)

Controlled Gates

circuit = q.QuantumCircuit(2)

# axis(control, target)
# 如果控制位元是1,就翻轉目標位元
circuit.cx(0, 1)
circuit.cy(0, 1)
circuit.cz(0, 1)

如果控制位元是疊加態呢 ?????

Controlled Gates

circuit = q.QuantumCircuit(2)

# axis(angle, control, target)
# 如果控制位元是1,就旋轉目標位元 (target) 
circuit.crx(Math.pi, 0, 1)
circuit.cry(Math.pi * 2, 0, 1)
circuit.crz(0, 0, 1)

Controlled Gates

circuit = q.QuantumCircuit(3)

# toffoli閘, 量子電腦的NAND閘

# axis(control, control, target)
# 如果兩個控制位元都是1,就翻轉目標位元
circuit.ccx(0, 1, 2)

Measurements

circuit = q.QuantumCircuit(2, 2)

# 做某些事
circuit = do_something(circuit)

# 然後量它
# [list of qubits], [list of classical bits]
circuit.measure([0, 1], [0, 1])

測量是量子運算唯一的不可逆操作

Measurements

這是做啥用的?

Measurements

跑跑看就知道了!

qr = QuantumRegister(1, 'qr')
cr = ClassicalRegister(1, 'cr')
c = q.QuantumCircuit(qr, cr)
# do something
c.measure([0], [0])
c.x(0).c_if(cr, 1)
# do something
c.measure([0], [0])
c.draw()

Build your own circuit NOW !!!

Real Dice

I, at any rate, am convinced that He does not throw dice.   -- Albert Einstein

Pseduorandomness

大家都知道電腦的隨機數都不是真隨機

// C++ 偽隨機數生成器

static long long seed = 1;

long long rand(void) {
    return seed = (seed * 998244353) % 1000000009;
}

Quantum RNG

但是量子電腦是真亂數

# 單位元真亂數產生器
c = q.QuantumCircuit(1, 1)
c.h(0)
c.measure([0], [0])
H |0\rangle = |+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt 2}

Quantum RNG

更多位元

# 雙位元真亂數產生器 (0~3)
c = q.QuantumCircuit(2, 2)
c.h([0, 1])
c.measure([0, 1], [0, 1])
|+\rangle \otimes |+\rangle = \frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{\sqrt 4}

Real Dice

DICE = \frac{|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle + |101\rangle}{\sqrt 6}

How to do this ???

A Simple Case

DICE_3 = \frac{|00\rangle + |01\rangle + |10\rangle}{\sqrt 3}

A Simple Case

DICE_3 = \frac{|00\rangle + |01\rangle + |10\rangle}{\sqrt 3}
import math
c = QuantumCircuit(2, 2)
c.ry(2 * math.asin(1 / math.sqrt(3)), 0)
c.x(0)
c.ch(0, 1)
c.measure([0, 1], [0, 1])
c.draw()

Quantum

Algorithms

一堆有趣的東西

Deutsch Jozsa Algorithm

Constant? Balanced?

Constant function:

\(f(x) = 0\)

\(f(x, y, z) = 1\)

\(f(x, y, z, ...) = \) 常數

Balanced function:

\(f(x, y, z, ...) = x+y\)

\(f(x, y, z) = cnot(x, z)\)

\(f(x, y, z, ...) = H(y)\)

你要試多少次才能確定它是哪種函數?

The Black Box

量子電路必須是可逆的!

The Black Box

# bit 0 is the input
# bit 1 is the output
def black_box(c):
  c.cx(0, 1)
  return c

Constant ?

Balanced ?

The Black Box

# bit 0, 1 is the input
# bit 2 is the output
def black_box(c):
  c.cx(0, 2)
  c.cx(1, 2)
  return c

Constant ?

Balanced ?

The Black Box

# bit 0 is the input
# bit 1 is the output
def black_box(c):
  c.z(0)
  c.x(1)
  return c

Constant ?

Balanced ?

Deutsch Jozsa Algorithm

c = q.QuantumCircuit(2, 1)

# 將輸出位元通過NOT閘
c.x(1)

# 將所有位元通過H閘
c.h([0, 1])

# 通過 black box
c = black_box(c)

# 再一次將所有位元通過H閘
c.h([0, 1])

# 測量所有輸入位元
c.measure([0], [0])

Quantum Teleportation

Teleportation

Circuit

傳送 qubit0 的量子態到 qubit 2

量子電路必須是可逆的!

Code

c = q.QuantumCircuit(3, 3)
# c.barrier()
c.h(1)
c.cx(1, 2)
c.cx(0, 1)
c.h(0)
# c.barrier()
c.measure([0, 1], [0, 1])
# c.barrier()
c.cx(1, 2)
c.cz(0, 2)
# c.barrier()

WHY ?

And WHY ?

為什麼不用簡單的交換閘 (swap gate) ?

c = q.QuantumCircuit(3)
c.swap(0, 2)

Bernstein-Vazirani Algorithm

Secret Box & AND

箱子裡有一個秘密的 \(n\)位元數字 \(s\)

 

每次詢問你可以:

問箱子一個數字 \(x\),然後它會回答你 \(s\ \&\ x\)

 

最壞情況下最少需要猜多少次呢?

Secret Box & AND

# secret_number = "101001"
def secret_box_AND(c):
  c.cx([5, 3, 0], 6)
  return c

箱子可能長成這樣

# secret_number = "????"
def secret_box_AND(c):
  c.cx([3, 2, 0], 4)
  return c
# secret_number = "???"
def secret_box_AND(c):
  c.cx(0, 3)
  return c
# secret_number = "?????"
def secret_box_AND(c):
  c.cx([1, 2], 5)
  return c

Secret Box & AND

secreat_number = "101001"
def secreat_box_AND(c):
  for i, istrue  in enumerate(reversed(secreat_number)):
    if istrue == '1':
      c.cx(i, 6);
  return c

更加一般化的形式

Solution Circuit

Code

# 要猜的數字為6位元整數

c = q.QuantumCircuit(6 + 1, 6)
c.h([0, 1, 2, 3, 4, 5])
c.x(6)
c.h(6)
c.barrier()
c = secreat_box_AND(c)
c.barrier()
c.h([0, 1, 2, 3, 4, 5])
c.measure([0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5])

More Generalized

# 要猜的數字是 [size] 位元整數

c = q.QuantumCircuit(size + 1, size)
c.h(range(size))
c.x(size)
c.h(size)
c.barrier()
c = secreat_box_AND(c)
c.barrier()
c.h(range(size))
c.measure(range(size), range(size))

References

References

“Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy.”

----Richard Feynman

 

“大自然不是古典的,如果你想要模擬大自然,你最好把它變成是量子力學的,而這是一個精彩的好問題,因為它看起來並不是那麼容易。”

——理查費曼

Quantum Computing

By 林尚廷

Quantum Computing

量子運算 :: 應該是寒訓講義的東西

  • 797