Upkar Lidder
Upkar Lidder is a Full Stack Developer and Data Wrangler with a decade of development experience in a variety of roles. He can be seen speaking at various conferences and participating in local tech groups and meetups.
Upkar Lidder
http://bit.ly/ibm-cloud-summit-2019
http://bit.ly/upkar-autoai
> ulidder@us.ibm.com > @lidderupk > upkar.dev
@lidderupk
IBM Developer
1. Create IBM Cloud Account using THIS URL
3. If you already have an account, use the above URL to sign into your IBM Cloud account.
2. Check your email and activate your account. Once activated, log back into your IBM Cloud account using the link above.
http://bit.ly/ibm-cloud-summit-2019
@lidderupk
IBM Developer
@lidderupk
IBM Developer
Natural Language Processing
Visual Recognition
@lidderupk
IBM Developer
To help simplify an AI lifecycle management, AutoAI automates:
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
Successfully Create, Store and Deploy a Linear Regression Model on IBM Cloud using Watson Studio and Watson Machine Learning Services.
@lidderupk
IBM Developer
http://bit.ly/boston-house-csv
@lidderupk
IBM Developer
Median House Price
Property Tax
#bedrooms
@lidderupk
IBM Developer
#bedrooms
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
http://bit.ly/boston-house-csv
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
1
2
@lidderupk
IBM Developer
@lidderupk
IBM Developer
{"input_data":[{ "fields": ["CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS","RAD","TAX","PTRATIO","B","LSTAT"], "values": [[0.00632,18,2.31,0,0.538,6.575,65.2,4.09,1,296,15.3,396.9,4.98]] }]}
@lidderupk
IBM Developer
Data pre-processing
Automated model selection
Automated Feature Engineering
Hyperparameter Optimization
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
http://wml-api-pyclient.mybluemix.net/index.html
@lidderupk
IBM Developer
from sklearn.linear_model import LinearRegression from sklearn.datasets import load_boston import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score boston = load_boston() X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target) # Create a new Linear Regression Model LR_model = LinearRegression() # Train the model LR_model.fit(X_train, y_train) # store actual and predited data to draw chart predicted = LR_model.predict(X_test) actual = y_test # The coefficients print('Coefficients: \n', LR_model.coef_) # The mean squared error print("Mean squared error: %.2f" % mean_squared_error(actual, predicted)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % r2_score(actual, predicted))
from sklearn.linear_model import LinearRegression from sklearn.datasets import load_boston import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score boston = load_boston() X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target) # Create a new Linear Regression Model LR_model = LinearRegression() # Train the model LR_model.fit(X_train, y_train) # store actual and predited data to draw chart predicted = LR_model.predict(X_test) actual = y_test # The coefficients print('Coefficients: \n', LR_model.coef_) # The mean squared error print("Mean squared error: %.2f" % mean_squared_error(actual, predicted)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % r2_score(actual, predicted))
from sklearn.linear_model import LinearRegression from sklearn.datasets import load_boston import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score boston = load_boston() X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target) # Create a new Linear Regression Model LR_model = LinearRegression() # Train the model LR_model.fit(X_train, y_train) # store actual and predited data to draw chart predicted = LR_model.predict(X_test) actual = y_test # The coefficients print('Coefficients: \n', LR_model.coef_) # The mean squared error print("Mean squared error: %.2f" % mean_squared_error(actual, predicted)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % r2_score(actual, predicted))
from sklearn.linear_model import LinearRegression from sklearn.datasets import load_boston import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score boston = load_boston() X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target) # Create a new Linear Regression Model LR_model = LinearRegression() # Train the model LR_model.fit(X_train, y_train) # store actual and predited data to draw chart predicted = LR_model.predict(X_test) actual = y_test # The coefficients print('Coefficients: \n', LR_model.coef_) # The mean squared error print("Mean squared error: %.2f" % mean_squared_error(actual, predicted)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % r2_score(actual, predicted))
from sklearn.linear_model import LinearRegression from sklearn.datasets import load_boston import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score boston = load_boston() X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target) # Create a new Linear Regression Model LR_model = LinearRegression() # Train the model LR_model.fit(X_train, y_train) # store actual and predited data to draw chart predicted = LR_model.predict(X_test) actual = y_test # The coefficients print('Coefficients: \n', LR_model.coef_) # The mean squared error print("Mean squared error: %.2f" % mean_squared_error(actual, predicted)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % r2_score(actual, predicted))
from sklearn.linear_model import LinearRegression from sklearn.datasets import load_boston import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score boston = load_boston() X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target) # Create a new Linear Regression Model LR_model = LinearRegression() # Train the model LR_model.fit(X_train, y_train) # store actual and predited data to draw chart predicted = LR_model.predict(X_test) actual = y_test # The coefficients print('Coefficients: \n', LR_model.coef_) # The mean squared error print("Mean squared error: %.2f" % mean_squared_error(actual, predicted)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % r2_score(actual, predicted))
Output
👉🏽
@lidderupk
IBM Developer
AutoAI
Notebook
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
# we will use WML to work with IBM Machine Learning Service from watson_machine_learning_client import WatsonMachineLearningAPIClient # Grab your credentials from the Watson Service section in Watson Studio or IBM Cloud Dashboard wml_credentials = { } # Instantiate WatsonMachineLearningAPIClient from watson_machine_learning_client import WatsonMachineLearningAPIClient client = WatsonMachineLearningAPIClient( wml_credentials ) # store the model published_model = client.repository.store_model(model=LR_model, meta_props={'name':'upkar-housing-linear-reg'}, training_data=X_train, training_target=y_train)
# we will use WML to work with IBM Machine Learning Service from watson_machine_learning_client import WatsonMachineLearningAPIClient # Grab your credentials from the Watson Service section in Watson Studio or IBM Cloud Dashboard wml_credentials = { } # Instantiate WatsonMachineLearningAPIClient from watson_machine_learning_client import WatsonMachineLearningAPIClient client = WatsonMachineLearningAPIClient( wml_credentials ) # store the model published_model = client.repository.store_model(model=LR_model, meta_props={'name':'upkar-housing-linear-reg'}, training_data=X_train, training_target=y_train)
# we will use WML to work with IBM Machine Learning Service from watson_machine_learning_client import WatsonMachineLearningAPIClient # Grab your credentials from the Watson Service section in Watson Studio or IBM Cloud Dashboard wml_credentials = { } # Instantiate WatsonMachineLearningAPIClient from watson_machine_learning_client import WatsonMachineLearningAPIClient client = WatsonMachineLearningAPIClient( wml_credentials ) # store the model published_model = client.repository.store_model(model=LR_model, meta_props={'name':'upkar-housing-linear-reg'}, training_data=X_train, training_target=y_train)
# we will use WML to work with IBM Machine Learning Service from watson_machine_learning_client import WatsonMachineLearningAPIClient # Grab your credentials from the Watson Service section in Watson Studio or IBM Cloud Dashboard wml_credentials = { } # Instantiate WatsonMachineLearningAPIClient from watson_machine_learning_client import WatsonMachineLearningAPIClient client = WatsonMachineLearningAPIClient( wml_credentials ) # store the model published_model = client.repository.store_model(model=LR_model, meta_props={'name':'upkar-housing-linear-reg'}, training_data=X_train, training_target=y_train)
@lidderupk
IBM Developer
import json # grab the model from IBM Cloud published_model_uid = client.repository.get_model_uid(published_model) # create a new deployment for the model model_deployed = client.deployments.create(published_model_uid, "Deployment of scikit model") #get the scoring endpoint scoring_endpoint = client.deployments.get_scoring_url(model_deployed) print(scoring_endpoint) #use the scoring endpoint to predict house median price some test data scoring_payload = {"values": [list(X_test[0]), list(X_test[1])]} predictions = client.deployments.score(scoring_endpoint, scoring_payload) print(json.dumps(predictions, indent=2))
import json # grab the model from IBM Cloud published_model_uid = client.repository.get_model_uid(published_model) # create a new deployment for the model model_deployed = client.deployments.create(published_model_uid, "Deployment of scikit model") #get the scoring endpoint scoring_endpoint = client.deployments.get_scoring_url(model_deployed) print(scoring_endpoint) #use the scoring endpoint to predict house median price some test data scoring_payload = {"values": [list(X_test[0]), list(X_test[1])]} predictions = client.deployments.score(scoring_endpoint, scoring_payload) print(json.dumps(predictions, indent=2))
import json # grab the model from IBM Cloud published_model_uid = client.repository.get_model_uid(published_model) # create a new deployment for the model model_deployed = client.deployments.create(published_model_uid, "Deployment of scikit model") #get the scoring endpoint scoring_endpoint = client.deployments.get_scoring_url(model_deployed) print(scoring_endpoint) #use the scoring endpoint to predict house median price some test data scoring_payload = {"values": [list(X_test[0]), list(X_test[1])]} predictions = client.deployments.score(scoring_endpoint, scoring_payload) print(json.dumps(predictions, indent=2))
import json # grab the model from IBM Cloud published_model_uid = client.repository.get_model_uid(published_model) # create a new deployment for the model model_deployed = client.deployments.create(published_model_uid, "Deployment of scikit model") #get the scoring endpoint scoring_endpoint = client.deployments.get_scoring_url(model_deployed) print(scoring_endpoint) #use the scoring endpoint to predict house median price some test data scoring_payload = {"values": [list(X_test[0]), list(X_test[1])]} predictions = client.deployments.score(scoring_endpoint, scoring_payload) print(json.dumps(predictions, indent=2))
@lidderupk
IBM Developer
@lidderupk
IBM Developer
@lidderupk
IBM Developer
Grab the FULL URL from : http://bit.ly/boston-house-notebook
@lidderupk
IBM Developer
Grab the FULL URL from :
http://bit.ly/boston-house-notebook
@lidderupk
IBM Developer
Upkar Lidder, IBM
@lidderupk
https://github.com/lidderupk/
ulidder@us.ibm.com
@lidderupk
IBM Developer
By Upkar Lidder
Upkar Lidder is a Full Stack Developer and Data Wrangler with a decade of development experience in a variety of roles. He can be seen speaking at various conferences and participating in local tech groups and meetups.