Apache Spark

usage in the real world

Yegor Bondar

KEY NOTES

 

  • Real world use cases
  • All right.. I want to start working with Apache Spark!
  • Conclusions

Use cases

Batch processing

Use cases

Real Time Processing

Real world use cases

  • Distributed processing of the large file sets
  • Process streaming data for different telecom network topologies
  • Running calculations on different datasets based on external meta configuration.

Distributed processing

Input

  1. Set of binary data files stored in HDFS
  2. Each file represents the geodata + network cell values
  3. Files have custom format
  4. Data can be parallelized

Challenges

  1. Parse custom data format
  2. Calculate different aggregation values
  3. Store result as JSON back to HDFS

Desired output

JSON objects which represents the average signal value for certain Web Mercator Grid zoom.

{
  "9#91#206" : {
    "(1468,3300,13)" : -96.65605103479673,
    "(1460,3302,13)" : -107.21621616908482,
    "(1464,3307,13)" : -97.89720813468034
  },
  "9#90#206" : {
    "(1447,3310,13)" : -113.03223673502605,
    "(1441,3301,13)" : -108.92957834879557
  },
  "9#90#207" : {
    "(1449,3314,13)" : -112.97138977050781,
    "(1444,3314,13)" : -115.83310953776042,
    "(1440,3313,13)" : -109.2352180480957
  }
}

Data Parallelizm

Implementation

  def prepareDataset(inputHolder: InputHolder,
processingCandidates: List[Info])(implicit sc: SparkContext): RDD[(Tile, GenSeq[GrdPointState])] = {
    sc.binaryFiles(inputHolder.getPath.getOrElse("hdfs://path/to/files"), partitions = 4).filter {
      case (grdPath, _) => processingCandidates.exists(inf => grdPath.contains(inf.path))
    }.flatMap {
      case (path, bytes) =>

        log(s"CoverageParser.prepareDataset - Loading dataset for $path")

        val grdInMemory = GdalGrdParser.gdal.allocateFile(bytes.toArray())

        val infOpt = GdalGrdParser.gdal.info(grdInMemory)

        val tileToPoints = ... // collect points from files on each node 

        tileToPoints
    }.reduceByKey(_ ++ _).mapValues(points => AveragedCollector.collect(Seq(points)))
  }

  def aggregateAndPersistTiles(inputHolder: InputHolder,
dataSet: RDD[(Tile, GenSeq[GrdPointState])])(implicit rootPath: String): Unit = {
    dataSet.mapPartitions { it =>
      it.toSeq.map {
        case (_, avgPoints) => ZoomedCollector.collectGrd(level.aggZoom)(avgPoints)
      }.iterator
    }.map { tileStates =>
      ZoomedCollector.collectTiles(level.groupZoom)(tileStates)
    }.map {
      tileStates =>
        tileStates.seq.toMap.asJson.noSpaces
    }.saveAsTextFile(s"$rootPath/tiles_result_${System.currentTimeMillis()}")
  }

Results

Dataset Single JVM implementation Spark Implementation (Local cluster)
14 M points 7 minutes & 2G Heap  1 minute
25 M points 12 minutes & 2G Heap 1.5 minute

Pros

  • Built in parallelism
  • Ways to improve performance

 

Cons

  • You should install 3rd party tool on each node to parse binary files

Data Stream Processing

Input

  1. JSON messages from Apache Kafka topics
  2. Each message represents the data from network topology element (cell, controller)
  3. Aggregated JSON object should be persisted to either Kafka topic or HBase

Challenges

  1. Aggregate different messages to build the final object
  2. Process Kafka topics in efficient manner
  3. Ensure reliability

Network Topology

{
  "technology" : "2g",
  "cell_id" : "10051",
  "site_id" : "UK1835",
  "cell_name" : "KA1051A",
  "latitude" : "49.14",
  "longitude" : "35.87777777777778",
  "antennaheight" : "49",
  "azimuth" : "35",
  "antennagain" : "17.5",
  "lac" : "56134",
  "Site name" : "UK1854"
}
{
  "SDCCH_NBR" : "23",
  "bts_id" : "5",
  "site_id" : "18043",
  "cell_id" : "10051",
  "bsc_id" : "1311",
  "technology" : "2G",
  "MCC" : "255",
  "element-meta" : "BTSID",
  "date" : "2016-10-31 03:03",
  "bcc" : "2",
  "SERVERID" : "259089846018",
  "HO_MSMT_PROC_MD" : "0",
  "element_type" : "BTS",
  "vendor" : "ZTE",
  "ncc" : "1",
  "cell_name" : "KA1051A"
}

Composed Key: 

2G#KS#KHA#1311#18043#KA1051A

Composed Value: 

Join of Input Jsons 

BTS

BSC

Output

Spark Streaming Design

Title Text

  type Record = Map[String, String]

  def process(config: Map[String, String])(implicit ssc: StreamingContext): Unit = {

    val primary = primaryStream(ssc)
    val secondary = secondaryStream(ssc)

    val cacheElement = getCacheInstance()

    transformStream(primary, secondary, ssc).foreachRDD { rdd =>

      logger.info(s"TopologyUpdateService.process - New RDD[${rdd.getNumPartitions}] Empty[${rdd.isEmpty}].")

      val toRetry = for {
        (_, (primarySeq, secondaryOpt)) <- rdd if secondaryOpt.isEmpty && primarySeq.forall(_.isSecondaryRequired)
        rec <- primarySeq
      } yield rec

      val toPersist = for {
        (_, (primarySeq, secondaryOpt)) <- rdd if secondaryOpt.nonEmpty || !primarySeq.forall(_.isSecondaryRequired)
        rec <- primarySeq
      } yield rec.enrich(secondaryOpt.asInstanceOf[Option[SecondaryRecord]])

      persist(mapToOutput(toPersist))

      toRetry.foreachPartition { it =>
        it.foreach { el =>
          cacheElement.cache("retry", el.data)
        }
      }

    }

  }

Stream processing code Snippet

Conclusion

  • Spark provides built-in Kafka support;
  • Spark provides built-in storage for caching messages;
  • It is easy to build re-try logic;
  • Easy to join different streams.

Meta Calculations

Input

  1. Abstract dataset
  2. User should be able to configure the flow how to process the dataset

Challenges

  1. Apply custom function to transform the data
  2. Apply different transformations based on the configuration
  3. The engine should be flexible

Spark SQL

Spark SQL — Batch and Streaming Queries Over Structured Data on Massive Scale

Spark SQL performance

Implementation of SQL Queries

    @tailrec
    def applyStages(stages: List[KpiTransformationStage],
                    inputTableAlias: String, stage: Int, df: DataFrame): DataFrame = {
      stages match {
        case section :: xs =>
          val query = addFromClause(section.toSqlQuery, inputTableAlias)
          val outputRes = sqlContext.sql(query)
          outputRes.registerTempTable(s"Stage${stage}Output")
          applyStages(xs, s"Stage${stage}Output", stage + 1, outputRes)
        case Nil =>
          df
      }
    }

    // ...
    registerUdfs(params)(sqlContext)
    // ...
    dataFrame.registerTempTable("Input")
{
      "transformations": [
          {
            "name": "TOPOLOGY_KPI_section",
            "stages": [
              {
                "sql": [
                  "select rowkey, nr_cells, nr_urban_cells, nr_total_cells,",
                  "getA(nr_small_cells, nr_total_cells) as aHealth,",
                  "getB(nr_dense_urban_cells, nr_total_cells) as bHealth"
                ]
              }
            ]
          }
      ]
}

Conlusions

  • Immutable nature of DataFrames/DataSets gives a lot of functionality;
  • You work in terms of 2D tables: Rows, Columns and Cells;
  • DataFrames performance is better than RDD;
  • UDF(User Defined Function) is powerful feature for custom transformations.

Starter Kit

Apache Spark can be used locally without any complex setup.

  1. Add Spark library as a dependency
  2. Run it in local[*] mode
val conf: SparkConf = new SparkConf()
                        .setMaster("local[*]")
                        .setAppName("TestApp")

val sc: SparkContext = new SparkContext(conf)

...

val lines = sc.textFile("src/main/resources/data/data.csv")

Starter Kit

Apache Jupiter, Apache Zeppelin

Conclusions

  • Big Data not always Big amount of data;
  • Apache Spark is the replacement for Apache Hadoop in MapR frameworks;
  • Different use cases can be covered using built-in Apache Spark functionality.

apache-spark-realworld

By Yegor Bondar

apache-spark-realworld

Apache Spark usage in the real world

  • 722