Dynamical instabilities and the Onset of Chaos in Tight Planetary Systems

Almog Yalinewich - 26.12.19

Preamble

The Two Body Problem

\frac{d A}{d t} \approx r^2 \dot{\theta} \approx l

Kepler's second law

\frac{d v}{d \theta} \approx \frac{d v}{d t} / \frac{d \theta}{d t} \approx \frac{G M}{r^2} / \frac{l}{r^2} \approx \frac{G M}{l}

In velocity space, the particle always moves on a circle

\vec{v} = \vec{v}_0 + \frac{G M}{l} \hat{\theta}

Cross with angular momentum and get the conserved LRL vector

\vec{A} = \vec{l} \times \vec{v}_0 =\vec{l}\times \vec{v} - G M \hat{r}

always points toward the periapse

Types of Structure Formation

Monolithic

Polylithic

Planetary Collisions

  • Composition
  • Atmospheric Mass
  • Spin
  • Orbital Parameters

Collision Course

\approx 1 M_{☽}
M_i \approx \frac{\left(\Sigma a^2\right)^{3/2}}{M_s^{1/2}}

Isolation mass

How long?

Teetering on the Verge of Stability

Dawson 2018

High Energy Connection

Every Gyr per solar system =>

1 per week in the galaxy

Survival Time of Tight Co-planar Planetary Systems

M
m
a
\Delta a
T = \sqrt{\frac{a^3}{G M}} f \left(\frac{\Delta a}{a}, \frac{m}{M}\right)
m \ll M, \, \Delta a \ll a

Numerical Experiments

\log \left(\rm yr\right)
\Delta \propto \Delta a /a

Rice et al. 2018

Previous Paradigm -

Chaotic Diffusion

m
\delta v_{\perp} \approx \frac{G m}{b v}
b
\delta v_{\perp}
v

Impulse Approximation

\delta v_{\theta} \approx e \frac{G m}{\Delta a^2} \sqrt{\frac{a^3}{G M}}
\delta v_{\perp} \approx \frac{G m}{\Delta a^2} \sqrt{\frac{a^3}{G M}}
v \approx \sqrt{\frac{G M}{a}} \frac{\Delta a}{a}
\delta v_{\perp} \approx \frac{G m}{b v}
a
\Delta a
\sqrt{\frac{G M}{a}} \frac{\Delta a}{a}

Planet - Planet Scattering

T \propto \left(\Delta a/a\right)^8

Higher order interaction gives

Not steep enough

T \approx t_s \left(\frac{e_f}{\delta e}\right)^2 \approx \sqrt{\frac{a^3}{G M}} \left(\frac{\Delta a}{a}\right)^5 \left(\frac{M}{m}\right)^2
e_f \approx \frac{\Delta a}{a}
\delta e^2 \approx \frac{\delta j}{j} \approx \delta v_{\theta} / \sqrt{\frac{G M}{a}} \Rightarrow \delta e \approx \frac{m}{M} \frac{a^2}{\Delta a^2}
t_s \approx \sqrt{\frac{a^3}{G M}} \frac{a}{\Delta a}

Diffusion Time

Evolution of Orbital Parameters

Diffusion predicts gradual increase

Evolution of Orbital Parameters

\psi \approx \pm \frac{m}{M} \frac{a^2}{\Delta a^2}
\psi
\vec{e} = \frac{\vec{v} \times \vec{j}}{G M} - \hat{r}

Energy / Angular momentum unchanged, but the position of periapse does change

\delta v_{r} \approx \frac{G m}{\Delta a^2} \sqrt{\frac{a^3}{G M}}

Periapse Drift

Failure of Chaotic Diffusion

Ellipse anti - alignment

Angles are not random

Theoretical explanation for survival time steepness?

KAM Theory

Hamiltonian Perturbation Theory

H = H_0 \left( \vec{I}\right) + \varepsilon H_1 \left(\vec{I}, \vec{\varphi} \right)
\varepsilon = 0 \Rightarrow \vec{I} = {\rm const}, \vec{\varphi} = \vec{\varphi}_0 + \vec{\omega} t, \vec{\omega} = \nabla_{I} H_0

KAM result: for a sufficiently small

\varepsilon

the deviation is bounded forever

\left|\vec{I} \left(t\right) - \vec{I} \left(0\right)\right| < C

Original Proof

H = H_0 \left( \vec{I}\right) + \varepsilon H_1 \left(\vec{I}, \vec{\varphi} \right)

Try to find a canonical change of variable

\vec{I}'\left(\vec{I}, \vec{\varphi}, \varepsilon\right), \vec{\varphi}' \left(\vec{I}, \vec{\varphi}, \varepsilon \right)

Such that the new Hamiltonian is

H' = H_0' \left( \vec{I}'\right)

Solution by iterations => convergence for finite

\varepsilon

Why doesn't this always work?

Periodic Points

Coordinates are just labels. Nothing special about them

What would prevent you from re - labeling the perturbed trajectory to the unperturbed trajectory?

Mapping preserves periodic points

If the perturbed trajectory has periodic points, it cannot be mapped to the unperturbed trajectory

System with Two Degrees of Freedom

I_1, \varphi_1
I_2, \varphi_2
\frac{\omega_2}{\omega_1} = \frac{\partial H/\partial I_2}{\partial H/\partial I_2} \notin \mathbb{Q}

No fixed points

System with Two Degrees of Freedom

I_1, \varphi_1
I_2, \varphi_2

Complete circle

\rho \notin \mathbb{Q}

Treasure Hunt Model

I, \varphi
\varphi_0
\varphi_1
\varphi_{n+1} = \varphi_n + \rho+\eta \left(\varphi_n\right)

Creating Fixed Points

\rho \ll 1 \Rightarrow \rho < \left| \eta \left(\varphi\right) \right|
\left|\frac{1}{2} - \rho \right| \ll 1 \Rightarrow \left|\frac{1}{2} - \rho\right| < \left| \eta\left(\varphi\right) + \eta \left(\varphi + \frac{1}{2} \right) \right|

Every irrational number can be approximated by a rational number

Dirichlet's Theorem

\left|\alpha - \frac{p}{q} \right| < \frac{C}{Q^{\nu}}
p \in \mathbb{Q}
0 < q \le Q \in \mathbb{Z}
\alpha \notin \mathbb{Q}

Multiple Steps

\varphi_n \approx \varphi_0 + n \rho + \eta_N \left(\varphi_0\right)
\eta_n\left(\varphi_0\right) = \sum_{m=0}^{n-1} \eta \left(\varphi_0 + m \rho\right)
n \rho

declines polynomially (Dirichlet)

What about the perturbation                          ?

\eta_n\left(\varphi_0\right)

Fourier Transform

\eta \left(\varphi\right) = \sum_{l \neq 0} \hat{\eta} \left(l\right) \exp \left(2 \pi i l \varphi\right)
\eta_n \left(\varphi\right) = \sum_{l \neq 0} \hat{\eta} \left(l\right) \exp \left(2 \pi i l \varphi\right) \frac{1 - \exp \left(2 \pi i nl \rho\right)}{1- \exp \left(2 \pi i l \rho\right)}

This sum looks complicated, but it is actually dominated by a single term

Asymptotics

\eta_n \left(\varphi\right) = \sum_{l \neq 0} \hat{\eta} \left(l\right) \exp \left(2 \pi i l \varphi\right) \frac{1 - \exp \left(2 \pi i nl \rho\right)}{1- \exp \left(2 \pi i l \rho\right)}

Critical value

1 - \exp \left(2 \pi i n l \rho \right) \approx 2 \pi in C l^{-\nu} \approx 1
l_c \approx \left(2 \pi i n C\right)^{1/\nu}
l \ll l_c
l \gg l_c
\frac{1 - \exp \left(2 \pi i nl \rho\right)}{1- \exp \left(2 \pi i l \rho\right)} \approx \frac{l^{\nu}}{2 \pi iC}
\frac{1 - \exp \left(2 \pi i nl \rho\right)}{1- \exp \left(2 \pi i l \rho\right)} \approx n
\hat{\eta} \left(l\right) < \hat{\eta}_0 e^{-\sigma l}

Bound on Perturbations

\left|\eta_n \left(\varphi\right) \right| < \hat{\eta}_0 n \exp \left(- \sigma \left(C n\right)^{1/\nu}\right)

Attains maximum for some finite

n = n_s

No fixed points / system is stable if

\hat{\eta}_0 n_s \exp \left(- \sigma \left(C n_s\right)^{1/\nu}\right) < C n_s^{-\nu}
\left|\eta_{n_s} \left(\varphi\right) \right| < n_s \rho

Nekhoroshev Estimates

Opposite extreme: very unstable conditions

\hat{\eta}_0 n \exp \left(- \sigma \left(C n\right)^{1/\nu}\right) > C n^{-\nu}

Hence

\hat{\eta}_0 n > C n^{-\nu} \Rightarrow \left(C/\hat{\eta}_0\right)^{1/\left(\nu+1\right)}
n > \left(\frac{C}{\hat{\eta}_0}\right)^{\frac{1}{\nu+1}} \exp \left(\frac{\sigma}{\nu +1} \frac{C^{\frac{2 \nu}{\nu^2+\nu}}}{\hat{\eta}_0^{\frac{1}{\nu+1}}}\right)

Substituting back to the exponent

Exponential dependence on the strength of the perturbation

Nekhoroshev Estimates in Hamiltonian Systems

H \left(\vec{I}, \vec{\varphi}\right) = H_0 \left(\vec{I}\right) + \varepsilon H_1 \left(\vec{I}, \vec{\varphi}\right)

Actions are bounded for exponentially long time

\left|\vec{I} \left(t\right) - \vec{I} \left(0\right)\right| < C_1 \varepsilon^{\frac{1}{2 \mathcal{N}}}
t < T = C_2 \exp \left(C_3/\varepsilon^{1/2 \mathcal{N}}\right)
\mathcal{N} - {\rm \# \, of \, degrees\, of\, freedom}

Nekhoroshev Estimates for Tight Planetary Systems

Dependence on Separation

\phi \propto \frac{1}{\sqrt{r_1^2+r_2^2 - 2 r_1 r_2 \cos \gamma}} \propto \sum_j b^j_{1/2} \left(\frac{r_2}{r_1}\right) \cos \left(j \gamma\right)

Interaction between planets

Fourier transform - Laplace coefficients

b_{1/2}^j \left(\alpha\right) = \frac{1}{\pi} \int_0^{2 \pi} \frac{\cos \left(j \theta \right) d \theta}{\sqrt{1+\alpha^2 -2 \alpha \cos \theta}}

Asymptotic expansion

b_{1/2}^j \left(\alpha\right) \propto \exp \left(- \left(\alpha - 1\right) \left|j \right|\right)
\ln T \propto \Delta a/a

Dependence on Mass

Quillen 2011 argues for three body resonance overlap

Three body resonant Hamiltonian independent of periapse direction

6 DOF

Two conserved quantities (Energy & Angular momentum)

12 DOF

4 DOF

Small parameter

m^2/M^2
\log T \propto \sqrt[4]{m/M}

Laplace Resonance

\lambda_1 p_1+\lambda_2 p_2 + \lambda_3 p_3 = 0
\lambda = t \sqrt{G M/a^3}
p_1, p_2, p_3 \in \mathbb{Z}

Ansatz for The Survival Time

T \approx c_1 \sqrt{\frac{a^3}{G M}} \frac{a}{\Delta a} \exp \left(c_2 \frac{\Delta a}{a} \frac{m^{1/4}}{M^{1/4}}\right)

Yalinewich & Petrovich 2019

c_1 = 4 \cdot 10^{-5}, \, c_2 = 8

Packing Metric

Previous paradigm:

T = f \left(\Delta \right)

Hill Parameter

\Delta \approx \frac{\Delta a}{a} \left(\frac{M}{m}\right)^{1/3}

We predict

T \approx f \left(\frac{\Delta a}{a} \left(\frac{M}{m}\right)^{1/4}\right)

Actually fits better to simulations

Packing Metric

Chambers et al. 1996

Two Body Resonances

Obertas et al 2017

Conclusion

Theoretical model for the survival time of tightly packed, co - planar, non resonant planetary systems

Future directions: effects of inclination & resonance

Questions?

Paradigm shift:

  • Chaotic diffusion
  • Packing metric

stability of planetary systems

By almog yalinewich

stability of planetary systems

  • 261