THE HOT JUPITER PERIOD-MASS DISTRIBUTION AS A SIGNATURE OF IN SITU FORMATION
Desert in sma-mass space

?
Magnetic Disc Truncation
B
Star
Disc
Competition between ram and magnetic pressures
v_r
vr
Ram pressure
Disc
v_r
vr
v_r \propto v_k \propto \sqrt{\frac{G M}{a}}
vr∝vk∝aGM
\rho \approx \frac{\dot{M}}{a^2 v_r}
ρ≈a2vrM˙

P_{\rm ram} \approx \rho v_r^2
Pram≈ρvr2
Magnetic Pressure
B \approx \frac{\mu}{a^3}
B≈a3μ
P_{\rm mag} \approx B^2
Pmag≈B2
P_{\rm mag} \approx P_{\rm ram} \, \Rightarrow \, a \propto \dot{M}^{-2/7}
Pmag≈Pram⇒a∝M˙−2/7
m \propto \dot{M} \, \Rightarrow \, a \propto m^{-2/7}
m∝M˙⇒a∝m−2/7
Tidal Torque - the easy bit
x
a
m
M
R
Tidal Torque - the easy bit
\frac{G M}{R^2} x \approx \frac{G m}{a^3} R^2 \Rightarrow \frac{x}{R} \approx \frac{m}{M} \left(\frac{R}{a}\right)^{3}
R2GMx≈a3GmR2⇒Rx≈Mm(aR)3
\Delta M \approx \frac{M}{R^3} R^2 x \Rightarrow \Delta M \approx m\left(\frac{R}{a}\right)^{3}
ΔM≈R3MR2x⇒ΔM≈m(aR)3
T \approx \frac{G m}{a^3} \cdot R\cdot R\cdot \Delta M\approx \frac{G m^2 R^5}{a^6}
T≈a3Gm⋅R⋅R⋅ΔM≈a6Gm2R5
n \frac{L}{T} \approx \sqrt{\frac{G M}{a^3}} m \sqrt{G M a}/T\approx \frac{M}{m} \left(\frac{a}{R}\right)^{5}
nTL≈a3GMmGMa/T≈mM(Ra)5
Hard bit - 6 orders of magnitude from Q
Holistic View

magnetic truncation
tidal torques
dynamical migration?
hot jupiter period-mass distribution
By almog yalinewich
hot jupiter period-mass distribution
- 316