Probing Galactic Centres with Tidal Disruption Events

Almog Yalinewich

21.5.19

Journey to the Galactic Centre

A glimpse to the Supermassive Black Hole in M87

Galactic Centre Mysteries

Star formation in extreme environments

Star - Central Black Hole interactions

Gas Accretion

The Twist

Types of Galactic Centres

Active

Very bright

Quiescent

very close

Tidal Disruption Events

Evidence

r \left(\tau=1\right) \propto t^0
L \propto \frac{E}{t} \propto \frac{1}{t} \frac{1}{a} \propto \frac{1}{t} \frac{1}{t^{2/3}} \propto t^{-5/3}

Schematic

Tidal Radius

Apoapse Distance

Tidal Radius

R_t

To black hole

2 R_s
\frac{G M_s}{R_s^2} \approx \frac{G M_h}{R_t^3} R_s \Rightarrow R_t = R_s \left(\frac{M_h}{M_s}\right)^{1/3}

Black Hole Mass Limit

R_s \left( \frac{M_h}{M_s}\right)^{1/3} > \frac{G M_h}{c^2}

Tidal radius

gravitational radius

M_h < M_s \left(\frac{R_s c^2}{G M_s}\right)^{3/2} \approx M_{\odot} \left(\frac{R_{\odot} c^2}{G M_{\odot}}\right)^{3/2} \approx 10^8 M_{\odot}

Apoapse Distance

a

To black hole

2 R_s
\frac{G M_h R_s}{R_t^2} \approx \frac{G M_h}{a} \Rightarrow a = R_s \left(\frac{M_h}{M_s}\right)^{2/3}

Forensics

?

Optical and X - Ray Signals

Outflow Driven Radio

black hole & accretion disc

cold outflow

cold ambient medium

hot outflow

hot ambient medium

Non Thermal Radio

Radio supernova

Synchrotron

Fermi Acceleration

Diffuse Shock Acceleration

\frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left(D \frac{\partial f}{\partial x}\right) + \frac{1}{3} \frac{d u}{d x} p \frac{\partial f}{\partial p}

think about adiabatic compression

u = \left\{\begin{matrix} u_1 & x>0\\ u_2 & x<0 \end{matrix}\right.
u_1
u_2
\frac{\partial f}{\partial t} = 0
f \propto p^{-\alpha}
\alpha = \frac{3}{1-u_2/u_1}

Self Absorption

L_{\nu,o} \approx \frac{m_e c^2}{r_e^2} \sqrt[4]{\frac{m_e c^2}{r_e^3 B^2}} \left(\frac{\nu r_e}{c}\right)^{5/2} A
L_{\nu,t} \approx \sqrt{B^2 r_e^3 m_e c^2} \left[\frac{1}{\gamma_{\min} }\sqrt{\frac{\nu r_e}{c}} \sqrt[4]{\frac{m_e c^2}{r_e^3 B^2}} \right]^{-p}N
\frac{d n_e}{d \gamma} \propto \gamma^{-p}
\gamma>\gamma_{\min}

Synchrotron Spectra for ASASSN-14li

Degeneracy

Origin of the Outflow

Accretion disc Jet

Accretion disc Jet

Unbound debris

Unbound Debris

q = \frac{M_h}{M_s}
\alpha_{xy} \approx q^{-1/6}
\alpha_{xz} \approx q^{-1/3}

The Precursor

M_d \approx 10^{-4} M_{\odot}

Energetics

f_{\nu} \approx 1 {\rm mJy}

Radio signal from ASASSN-14li

\nu \approx 10 \, \rm GHz
d \approx 90 \, \rm Mpc
t \approx 1 \, \rm y
u \approx 4 \pi\nu f_{\nu} d^2 t \approx 10^{45} \, \rm erg
v \approx 10^4 \rm km/s
m \approx \frac{u}{\varepsilon v^2} \approx 10^{-4} M_{\oplus}
\varepsilon_e \approx 10^{-2}

Simulations

High impact parameter

Simulations

Low impact parameter

Mass Velocity Distribution

high impact parameter

low impact parameter

Bow Shock

Shocked region = 3 x obstacle size

Density Profile for ASASSN 14li

Event Rate

R_p
R_t

Full loss cone

\dot{N} \propto \frac{R_p}{R_t}

Empty loss cone

\dot{N} \propto \log \frac{R_p}{R_t}

That's gas density.

What about the stellar density?

Generalised Bondi Problem

Governing Equations

\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(\rho u r^2\right) = q
\rho \frac{\partial u}{\partial t} + \rho u\frac{\partial u}{\partial r}=-\frac{\partial p}{\partial r}-\rho \frac{{\rm d} \Phi}{{\rm d} r} -q u
\frac{\partial \epsilon}{\partial t}+ \frac{1}{r^2} \frac{\partial}{\partial r} \left[\rho r^2 u \left(\epsilon +\frac{p}{\rho}\right)\right]=\frac{1}{2} q v_w^2+q\Phi
\Phi = - \frac{G M_h}{r}
\epsilon \equiv \frac{1}{2} v^2 + \Phi + \frac{p}{\rho (\gamma-1)}
q = D r^{-\eta}

Mach Number Profile

to the black hole

outside

Density Profile

Asymptotic Expansion

r \ll R_b
\rho \propto r^{-3/2}
r \gg R_b
\rho \propto r^{1-\eta}

Total number of stars

Stellar density slope

Implications for ASASSN 14li

\eta \approx 5/2

If there is no break

Governing equations can be solved analytically

\tilde{\rho} = \frac{\rho}{\rho_b} = \frac{4 \sqrt{6}}{3 \tilde{r}^{3/2}}
\rho_b = \frac{D R_b^{1-\eta}}{v_w^2}
\tilde{r} = \frac{r}{R_b}
R_b = \frac{G M_h}{v_w^2}

Summary

Radio LoudĀ  TDE -> density profile in a GC

Density profile -> Density of wind emitting stars

Wind emitting -> main sequence stars?

questions?

Probing Galactic Centres with Tidal Disruption Events

By almog yalinewich

Probing Galactic Centres with Tidal Disruption Events

  • 259