Negative Dynamical Friction on compact objects moving through dense gas

Almog Yalinewich

27.6.19

Norm Group meeting

Dynamical Friction

Gravity Assist

M
b
\Delta v_{\perp}
v
v^2 \gg \frac{G M}{b}
\Delta v_{\perp} \approx \frac{G M}{b v}
\Delta v_{\parallel}
\Delta v_{\parallel} \approx \frac{\Delta v_{\perp}^2}{v} \approx \frac{G^2 M^2}{b^2 v^3}
v^2 \ll \frac{G M}{b}
\Delta v_{\parallel} \approx 2 v

Drag Force

R_b
R_b \approx \frac{G M}{v^2}
F \approx \rho v^3 R_b^2 \approx \rho G^2 M^2 /v

Why do we care?

violent relaxation in galaxies

Migration and eccentricity damping in proto - planetary discs

Negative Dynamical Friction

Standoff Distance

v_{\star}
v_w
2 R_0
R_0 \approx \sqrt{\frac{\dot{M v_w}}{4 \pi \rho_0 v_{\star}^2}}
\dot{M}
\rho_0

Equating dynamical pressure

\frac{R \left(\theta\right)}{R_0} = \frac{\sqrt{3 \left(1-\theta \cot \theta\right)}}{\sin \theta}
u = v_{\star}/v_w
\varpi = 3 \left(1- \theta \cos \theta\right)
\frac{\sigma}{R_0 \rho_0} = \frac{\left[2u\left(1-\cos \theta\right) + \varpi^2\right]^2}{2 \varpi \sqrt{\left(\theta - \sin \theta \cos \theta\right)^2 + \left(\varpi-\sin^2 \theta\right)^2}}

Wake Gravity

\rho = \sigma \delta \left(r-R\right) + \left\{ \begin{matrix} \rho_0 & r>R \\ \frac{\dot{M}}{4 \pi r^2 v_w} & {R < r} \end{matrix} \right.
a = G \int_0^{\infty} r^2 dr \int_0^{\pi} 2 \pi \sin \theta d \theta \cos \theta \frac{\rho}{r^2}
a \propto \int_0^{\pi} d \theta \cos \theta \frac{R}{R_0} \times
\left[\frac{3}{2} \left(1+\frac{2u \left(1-\cos \theta\right)}{R/R_0}\right)^2 - 2 \left(1+\frac{u^2 \sin^2 \theta}{R^2/R_0^2}\right)\right]

Wake Gravity, cont'd

a \approx 8.18 \cdot \frac{4 \pi}{3} G \rho_0 R_0
u \ll 1
a \approx - 0.975 \cdot \frac{4 \pi}{3} G \rho_0 R_0 u^2
u \gg 1
a = 0
u \approx 1.71

Numerical Verification

Accretion Powered Wind

Trajectory

\dot{M} \propto \dot{M}_B \approx \rho v_{\star} R_b^2 \approx \frac{\rho G^2 M^2}{v_{\star}^3}
a \approx G \rho R_0 \approx G \rho \sqrt{\frac{\dot{M} v_w}{\rho v_{\star}^2}} \propto v_{\star}^{-5/2}
v_{\star} \propto t^{2/7}

Super Eddington Accretion

v_k \approx v_w \approx \chi \sqrt{\frac{\dot{M}_{\rm Edd}}{\dot{M}}} c

Calibration from SS433

v_w \approx 1500 \sqrt{10^3 \frac{\dot{M}_{\rm Edd}}{\dot{M}}} \, \rm \frac{km}{s}
\dot{M} \approx \frac{L}{v_k^2} \approx \frac{L_{\rm Edd}}{c^2} \approx \dot{M}_{\rm Edd}

SS433

Condition for Acceleration

v_w > v_{\star}
\rho < 3 \cdot 10^{-10} \left(10 \frac{M_{\odot}}{M}\right) \left(\frac{v_{\star}}{100 \, \rm km/s}\right) \, \rm \frac{g}{cm^3}

Self Gravity Limit on AGN discs

\rho < 7 \cdot 10^{-12} \left(\frac{\mathcal{M}}{10^8 M_{\odot}}\right) \left(\frac{0.1 \, \rm pc}{r}\right)

Application to Grazing Accretion

Black holes in AGN Discs

Reverse migration?

Growth of Supermassive Black Holes

Negative dynamical friction can impede black hole sinking, which is necessary for SMBH growth

negative dynamical friction

By almog yalinewich

negative dynamical friction

  • 190